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82. (a) ie" =e" @where U=x
dx dx

d e'+e" e —e"
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d ef—e* e +e
(b) — =
dx 2 2
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© y)="% 1543
1 -
y(h=4"%=1.175

y=1.175(x-1)+1.543
y=1.175x+0.368

1 1
d)m=——=—
@ my == =117

y=-0.851(x—1)+1.543
y=-0.851x+2.394

=-0.851
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83.(a) 1I-x>>0
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b) f’/(x)=—In(1- =1-
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Chapter 4
Applications of Derivatives

5 _

1 _ZCJ 1
(d)y’()==— =-4/3

Section 4.1 Extreme Values of Functions
(pp. 187-195)

Exploration 1 Finding Extreme Values

1. From the graph we can see that there are three critical
points: x =—1, 0, 1.
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Critical point values: f(-=1)=0.5, f(0)=0, f(1)=0.5
Endpoint values: f(-2) =04, f(2)=0.4
Thus f has absolute maximum value of 0.5 at x =-1 and

x =1, absolute minimum value of 0 at x = 0, and local
minimum value of 0.4 at x =-2 and x = 2.

[=2,2]by [-1,1]

2. The graph of f” has zeros at x =—1 and x = 1 where the
graph of f has local extreme values. The graph of £’ is not
defined at x = 0, another extreme value of the graph of 1.

[=2,2]by [-1,1]

. . d B
3. Using the chain rule and—(‘x‘) =—, we find
dx X

a B, -

v x o (P

Quick Review 4.1
d -1

1
. 4—x)=
24 —x dx( o 24 —x

2. f’(x)=%2(9—x2)’”2 =—(9—x2)’3/2 -%(9—;&)

L f'(x)=

— 2\-3/2 _ 2x
=—(9-x") (—2x)_m
3. g/(x)=—sin (nx) » = Inx = - S 80
dx X
4. I'(x)=e> Dy =262
dx

5. Graph (c), since this is the only graph that has positive
slope at c.

6. Graph (b), since this is the only graph that represents a
differentiable function at a and b and has negative
slope at c.

7. Graph (d), since this is the only graph representing a
function that is differentiable at b but not at a.

8. Graph (a), since this is the only graph that represents a
function that is not differentiable at a or b.

9. Asx — 3", V9—x* — 0. Therefore, lim f(x) =<
x—=3"

10. Asx — 3%, Yy9—x? — 0". Therefore, lim _f(x)= ce.
x—-3
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11.

12.

(a) i(ﬁ —2x)=3x2-2
dx

FO=31%*-2=1

(b) i(x +2)=1
dx
f3)=1
(c¢) Left-hand derivative:
i J@ED =) _
h—0~ h
. h*+6h* +10h
= lim ——
h—0~ h
= lim (h* +6h+10)
h—0~
=10
Right-hand derivative:
2 -fQ2
i J@HD = F(2)

C [2+h)}-202+h)-4
lim
h—0~ h

[(2+h)+2]-4

= lim
h—0+ h h—0+ h
= lim —
-0t h
= lim 1
h—0t

Since the left-and right-hand derivatives are not equal,

f’(2) is underfined.

(a) The domain is x # 2. (See the solution for 11.(c)).
, 3x% -2, x<2

b = >

(b) f'(x) {1, >0

Section 4.1 Exercises

1.

2
3

Minima at (-2, 0) and (2, 0), maximum at (0, 2)

. Local minimum at (-1, 0), local maximum at (1, 0)

. Maximum at (0, 5) Note that there is no minimum since the

endpoint (2, 0) is excluded from the graph.

. Local maximum at (-3, 0), local minimum at (2, 0),

maximum at (1, 2), minimum at (0, —1)

- Maximum at x = b, minimum at x = ¢,;

The Extreme Value Theorem applies because f is continuous
on [a, b], so both the maximum and minimum exist.

. Maximum at x = ¢, minimum at x = b;

The Extreme Value Theorem applies because f is continuous
on [a, b], so both the maximum and minimum exist.

. Maximum at x = ¢, no minimum;

The Extreme Value Theorem does not apply, because the
function is not defined on a closed interval.

. No maximum, no minimum;

The Extreme Value Theorem does not apply, because the
function is not continuous or defined on a closed interval.

. Maximum at x = ¢, minimum at x = a;

The Extreme Value Theorem does not apply, because the
function is not continuous.

10.

11.

12.

13.

14.

15.

Maximum at x = ¢, minimum at x = ¢;
The Extreme Value Theorem does not apply since the
function is not continuous.

1 1
The first derivative f’(x) = -t has a zero at x = 1.
X X

Critical point value: f(1)=1+1n1=1
Endpoint values: f(0.5)=2+1n0.5=1.307

f(4):%+ln4zl.636

Maximum value is %-k In4 at x =4,

minimum value is 1 at x =1;

local maximum at (;, 2—In 2)

The first derivative g’(x) = —e " has no zeros, so we need
only consider the endpoints.

gh=ct=t
e

Maximum value is e at x = —1;

g-h=e V=

.. !
minimum value is — at x =1.
e

. L 1
The first derivative h’(x) = 271 has no zeros, so we need
X+

only consider the endpoints.
h(0)=In1=0 h(3)=1In4

Maximum value is In 4 at x = 3;

minimum value is 0 at x = 0.

. . 2
The first derivative k’(x) = —2xe " has a zero at x = 0.
Since the domain has no endpoints, any extreme value must

occur at x=0. Since k(0) = efo2 =land lim k(x)=0, the
Xx—too

maximum value is 1 at x = 0.

The first derivative f’(x) = cos(x + Z), has zeros

T S
atx=—, x=—o1.
4 4
. . /4
Critical point values: x = 1 fx)=1
Sm
=== =1
x= f(x)
Endpoint values: x=0 fx)= €L
‘ 2
r
== =0
= f(x)
. . T
Maximum value is 1 at x = Z;
S5t

minimum value is -1 at x =



15.

16.

17.

18.

19.

20.

Continued
1].
\/5 ’

local maximum at(?, OJ

local minimum at (0,

The first derivative g’(x) = sec x tan x has zeros

at x =0 and x =« and is undefined at x =

Since g(x) = sec x is also undefined at x = —, the critical

Ny Y

points occur only at x =0 and x = 7.
x=0
X=T

Critical point values: g(x)=1
g(x)=-1

Since the range of g(x) is (—eo, —1]U[1, o), these values

must be a local minimum and local maximum, respectively.

Local minimum at (0, 1); local maximum at (z, —1)

=3/5

. L 2 . .
The first derivative f’(x) = gx is never zero but is

undefined at x = 0.

Critical point value: x=0 fx)=0
Endpoint value: x=-3  f(x)=(=3"
=3 =1.552

Since f(x) >0 for x # 0, the critical point at x = 0 is a local
minimum, and since f(x)<(-3)25 for -3 <x< 1, the
endpoint value at x = -3 is a global maximum.

3 2/5

Maximum value is at x =-3;

minimum value is 0 at x = 0.

=2/5

. L 3 . .
The first derivative f’(x) = gx is never zero but is

undefined at x = 0.
Critical point value: x=0 f(x)=0

Endpoint value: x=3 f(x)=3%5~1.933
Since f(x) < 0 for x < 0 and f(x) > 0 for x > 0, the critical
point is not a local minimum or maximum. The maximum

value is 33/5 atx=3.

Ninimum
A=z

L y=1
[—2,6]by [—2,4]
Minimum value is 1 at x = 2.

Haximuml

%=-.8164973 [v=s.0BBG621
[=6, 6] by [-2,7]

To find the exact values, note that y" = 3x% - 2, which is

2 .
zero when x =+ g Local maximum at

21.

22,

23.

24,

Section 4.1 163

46

—\/g, 4+ 96] = (—0.816, 5.089); local minimum at

g, 4—4\9/6J =(0.816,2.911)

Hinimum
#=1.3232332 I¥=-1.518519

[—6, 6] by [—5, 20]

To find the exact values, note that

y = 3x2+2x—-8= (3x—4)(x +2), which is zero when

4
x=-2o0rx= 3 Local maximum at (-2, 17); local minimum

4 41
at| —, ——
(3 27)

=
f

[—6, 6] by [—4, 4]

Note that y’ = 3x2 —6x + 3 = 3(x —1)2, which is zero at

x = 1. The graph shows that the function assumes lower
values to the left and higher values to the right of this point,
so the function has no local or global extreme values.

[—4,4] by [-2,4]

Minimum valueis O at x=—1 and at x = 1.

L
e (1L,

[—4.7,4.7] by [-3.1, 3.1]

To confirm that there are no “hidden” extrema, note that

Y == =172 (2x)= % which is zero only at x =0
("=

)2
and is undefined only where y is undefined. There is a local
maximum at (0, —1).
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25.

26.

27.

28.

29.

Y

Hinimum—"
H=0 =1

[—-1.5,1.5] by [-0.5, 3]

The minimum value is 1 at x = 0.

=i
[—4.7,4.7] by [—3.1,3.1]

R

Hinimum
H=0

The actual graph of the function has asymptotes at x = %1,
so there are no extrema near these values. (This is an
example of grapher failure.) There is a local minimum

at (0, 1).
AN

v=2
[—4.7,47] by [-3.1,3.1]

Haximum
H=1

Maximum value is 2 at x = 1;
minimum value is 0 at x =—1 and at x = 3.

s/

LAl

Hinirum
H=1 ¥=6.5

[—4, 4] by [—80, 30]

Minimum value is —% atx =-3;
local maximum at (0, 10);

local minimum at(l, 123)

f\_

V=5
[-5, 5] by [-0.7, 0.7]

—

Haximum
H=1

. 1
Maximum value is E atx=1;

.. .1
minimum value is —3 atx=-1.

30.

[

Hinimur
H=-2 ¥=-.5

[—=5,5] by [—-0.8, 0.6]

. 1
Maximum value is 5 atx=0;

.. .1
minimum value is —3 atx=-2.

NIV

[—6, 6] by [0, 12]

31.

Maximum valueis 11 at x=5;
minimum value is 5 on the interval [-3, 2];
local maximum at (-5, 9)

—
L/

[=3, 8] by [-5, 5]

32.

Maximum value is 4 on the interval [5, 7];
minimum value is —4 on the interval [-2, 1].

e
_/

[—6. 6] by [—6, 6]

33.

Maximum value is 5 on the interval [3, oo);
minimum value is -5 on the interval (—eo, —2].

N/

[—6. 6] by [0, 9]

Minimum value is 4 on the interval [-1, 3]

35.
IR

Naximum
HW=-.0

¥=1.0341287
[—4,4] by [-3, 3]

Sx+4

3x

y = x2/3(1)+§x_1/3(x+2) =



35. Continued
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crit. pt. ‘ derivative extremum value
x= _4 0 local max 210”3 =1.034
5 25
x=0 undefined local min 0
36. \ /
[—4, 4] by [-3,3]
2 8x> -8
y =2+ B -4y = Xz
3 33x
crit. pt. derivative ‘ extremum ‘ value
x=-1 0 minimum -3
x=0 undefined local max 0
x=1 0 minumum -3
37.
Haximum
%=1.4142136 Iv=z
[—2.35,2.35] by [-3.5, 3.5]
1
Y =x e ———(-2x)+ (V4 -x*
24— x?
_ —x*+(@4-x%) _ 4-2x"
Va-x? V4 - x?
crit. pt. derivative extremum value
x=-2 undefined local max 0
x==2 0 minimum -2
x= \/E 0 maximum 2
x=2 undefined local min 0
38.
Haximum
=24 ¥=4.4616768

[-4.7,47] by [-1, 5]

1
=X —
Y 243—x

(=) +2xv3—-x

_—x?+4x(3-x)  —5x7+12x

243—x

243—x

crit. pt. derivative extremum value
x=0 0 minimum 0
= 2 0 local max EISU2 =4.462
5 25
x=3 undefined minimum 0
39. \
[—4.7,4.7] by [0, 6.2]
, ]2, x<1
Y= 1, x>1
crit. pt. ‘ derivative ‘ extremum ‘ value
x=1 ‘ undefined ‘ minimum ‘ 2
40. \
!
[~4,4] by [-1, 6]
, -1 x<0
YT 2-2x, x>0
crit. pt. ‘ derivative extremum value
x=0 undefined local min 3
x=1 0 local max 4
41.
[-4, 6] by [-2, 6]
,_]2x-2, x<1
Y T2x+6, x>1
crit. pt. ‘ derivative extremum value
x=-1 0 maximum 5
x=1 undefined local min 1
x=3 0 maximum 5



166 Section 4.1

42.

Ny
\/

Hinimum

H=3.1EHE09  ¥=-3.075201
[-4, 6] by [-5, 5]

We begin by determining whether f’(x) is defined at

x =1, where
1 , 1 15
——x"——x+—, x<1
fx)=1 4 27 4
x3—6x2+8x, x>1

Left-hand derivative:

1 , 1 15
B ——(+h? == (1+h)+—-3
fim SAED=SD 4 2 4
h—0~ h h—0~ h
- 2 f—
- lim h”—4h
h—0—  4h
1
= lim —(-h-4
her{)l‘ 4( )
=-1
Right-hand derivative:
i SAED = F D)
h—0t h
. (1+h)?—6(1+h)? +8(1+h)-3
= lim
h—0t h
. K =31-h
h h—0t h
= lim (h* =3h-1)
h—0t
=1
1 1
s x<1

Thus f/(x)=4 2" 2
3x2—12x+8, x>1

Note that —%x —%: 0 when x =—1, and

12+412%2 —43)8)

2(3)

3x2—12x+8=0 when x =

_lxJag o 2\3
6 R

23

But 2—-——=0.845 <1, so the only critical points occur at

3
3
NE)

x=-1 andx:2+?:3.155.

crit. pt. ‘ derivative ‘ extremum value
x=-1 0 local max 4
x=3.155 0 local max =-3.079

43.(a) V(x)=160x—52x" +4x’
V/(x) =160 104x +12x* = 4(x —2)(3x — 20)

The only critical point in the interval (0, 5) is at x = 2.
The maximum value of V(x) is 144 at x = 2.

(b) The largest possible volume of the box is 144 cubic
units, and it occurs when x = 2.
44. (a) P'(x)=2-200x""
The only critical point in the interval (0, o) is at x = 10.
The minimum value of P(x) is 40 at x = 10.

(b) The smallest possible perimeter of the rectangle is
40 units and it occurs at x = 10, which makes the
rectangle a 10 by 10 square.

45. False. For example, the maximum could occur at a corner,
where f’(c) would not exist.

46. False. Consider the graph below.

.

N

47.E. i(4x—x2+6)=4—2x
dx
4-2x=0
x=2

F(Q)=4(2)-(2)*+6=10
48. E. See Theorem 2.

49. B. i(ﬁ —6x+5)=3x>-6
dx

3x2-6=0
x=i\/5

50. B.

51. (a) No, since f’(x) = %(x —2)"™"3, which is undefined
atx=2.

(b) The derivative is defined and nonzero for all x # 2.
Also, f(2)=0 and f(x) >0 forall x # 2.

(¢) No, f (x) need not have a global maximum because its
domain is all real numbers. Any restriction of fto a
closed interval of the form [a, b] would have both a
maximum value and a minimum value on the interval.

(d) The answers are the same as (a) and (b) with 2 replaced
by a.

—x3+9x, x<-30r0<x<3

52. Note that f(x)=
f&®) { —3<x<0orx2>3.

x3—9x,
-3x2+9, x<3or0<x<3

Therefore, f'(x) =
70 {3)62_9,

—3<x<0orx>3.

(a) No, since the left- and right-hand derivatives at x = 0 are
-9 and 9, respectively.



52. Continued

(b) No, since the left- and right-hand derivatives at x = 3 are
—18 and 18, respectively.

(¢) No, since the left- and right-hand derivatives at x = -3
are —18 and 18, respectively.

(d) The critical points occur when
f'(x)=0(atx =% \/3) and when f’(x) is undefined (at
x =0 or x = £3). The minimum value is 0 at x =-3, at

x =0, and at x = 3; local maxima occur at

(—/3, 6¢/3) and (+/3, 6v/3).

53.(a) f'(x)= 3ax? +2bx+cisa quadratic, so it can have
0, 1, or 2 zeros, which would be the critical points of f.
Examples:

J
/

[-3. 3] by [-5, 5]

The function f(x) = x® —3x has two critical points at
x=-land x=1.

/
e

[-3. 3] by [-5, 5]

The function f(x) = x* —1 has one critical point at

:
e

[-3. 3] by [-5, 5]

The function f(x) = x* + x has no critical points.

(b) The function can have either two local extreme
values or no extreme values. (If there is only one critical
point, the cubic function has no extreme values.)

54. (a) By the definition of local maximum value, there is an
open interval containing ¢ where f(x) < f(c), so

f(x)=fe)=0.

(b) Because x — ¢*, we have (x — ¢) > 0, and the sign of the
quotient must be negative (or zero). This means the
limit is nonpositive.

(¢) Because x = ¢, we have (x — ¢) < 0, and the sign of the
quotient must be positive (or zero). This means the limit
is nonnegative.
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(d) Assuming that f’(c) exists, the one-sided limits in
(b) and (c) above must exist and be equal. Since one is
nonpositive and one is nonnegative, the only possible
common value is 0.

(e) There will be an open interval containing ¢ where
f(x) —f(c) 2 0. The difference quotient for the left-hand
derivative will have to be negative (or zero), and the
difference quotient for the right-hand derivative will
have to be positive (or zero). Taking the limit, the left-
hand derivative will be nonpositive, and the right-hand
derivative will be nonnegative. Therefore, the only
possible value for f’(c) is 0.

55. (a)

[-0.1, 0.6] by [-1.5, 1.5]

f(0)=01is not a local extreme value because in any
open interval containing x = 0, there are infinitely many
points where f (x) = 1 and where f(x)=-1.

(b) One possible answer, on the interval [0, 1]:

0<x<l1

1
fx)= (1 —x)cosi,

0, x=1

This function has no local extreme value at x = 1. Note
that it is continuous on [0, 1].

Section 4.2 Mean Value Theorem
(pp. 196-204)

Quick Review 4.2

1. 2x*-6<0
2x* <6
x*<3
- 3<x<\/§
Interval: (—\/3, \/g)

2.3x*-6>0
3x?>6
x2>2
x<—2 orx>2
Intervals: (—oo, — V2)UW2, )

3. Domain: 8—2x% >0
8>2x*
4> 52
—2<x<L2
The domain is [-2, 2].

4. f is continuous for all x in the domain, or, in the interval
[-2,2].
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5. f is differentiable for all x in the interior of its domain,
or, in the interval (-2, 2).

6. We require x? —1#0, so the domain is x # *1.
7. f is continuous for all x in the domain, or, for all x # £1.
8. f is differentiable for all x in the domain, or, for all x # %1.
9. 7=-2(2)+C

T7=4+C

Cc=3

10. —-1=)*+2()+C
-1=3+C
C=—4

Section 4.2 Exercises
1. (a) Yes.

(b) f'(x):ix2 +2x—1=2x+2
dx

2422220 4
1-0
1
c=_.
2
2.(a) Yes.
’ d 2/3 2 -1/3
b = ==
(b) f'(x) o 3*
2. _1-0_,
3 1-0
cC=—.
27

3. (a) No. There is a verticle tangent at x = 0.
4. (a) No. There is a corner at x = 1.

5.(a) Yes.

® =L sn =]
dx

V1=x?

1 :(7r/2)—(—7r/2):7r

1—¢? 1-(-1 2
1—02:2
T
c=+\1-4/7* =0.771.
6. (a) Yes.
d 1
b) f/(x)=—In(x-1=
(b) f'(x0) e (x=1 1
1 _ln3—ln1
c—1 4-2
=472 12820
In3-In1l

7. (a) No. The function is discontinuous at x =

SRR

=1

=

8. (a) No. The split function is discontinuous at

9. (a) The secant line passes through (0.5, (0.5)) = (0.5, 2.5)
and (2, f(2)) = (2, 2.5), so its equation is y = 2.5.
(b) The slope of the secant line is 0, so we need to find
¢ such that f” (¢)=0.

1-¢?2=0

cr=1

c=1
fl=f)=2

The tangent line has slope 0 and passes through (1, 2),
S0 its equation is y = 2.
10. (a) The secant line passes through (1, f (1)) = (1, 0) and
3, f3) =3, V2),s0 its slope is
V2-0_2_ 1
3.1 2 2
1

2

1 1
ory=—=x——=,o0ry=0.707x-0.707.
272

The equationis y=—=(x—1)+0

(b) We need to find ¢ such that f’(c) =

-

L1
2\ce—1 \/z
2We-1=+2
c—1=l
2

3

c=—

2

f(C)=f(;)= %=%

1
The tangent line has slope \/_ and passes through
2

(3 1) Its equation is y = l(x - 3) +i or
2 \2) V20U 2) 2

1 1
y=—4=x——,0ry=0.707x-0.354.

V27 22
11. Because the trucker’s average speed was 79.5 mph, and by

then Mean Value Theorem, the trucker must have been
going that speed at least once during the trip.

12. Let f (f) denote the temperature indicated after # seconds.
We assume that f’(¢) is defined and continuous for
0<1t<20. The average rate of change is 10.6° F/sec.
Therefore, by the Mean Value Theorem, f”(c) =10.6°F/sec
for some value of ¢ in [0, 20]. Since the temperature was
constant before ¢ = 0, we also know that f”(0) = 0°F/min.
But f is continuous, so by the Intermediate Value
Theorem, the rate of change f’(f) must have been
10.1°F/sec at some moment during the interval.

13. Because its average speed was approximately 7.667 knots,
and by the Mean Value Theorem, it must been going that
speed at least once during the trip.



14. The runner’s average speed for the marathon was
approximately 11.909 mph. Therefore, by the Mean Value
Theroem, the runner must have been going that speed at
least once during the marathon. Since the initial speed
and final speed are both 0 mph and the runner’s speed is
continuous, by the Intermediate Value Theorem, the
runner’s speed must have been 11 mph at least twice.

15.(a) f'(x)=5-2x

Since f’(x) >0 on (—oo, ;J, f/(x)=0atx= %, and
, 5
f'(x)<0on 5, oo |, we know that f (x) has a local
maximum at x = é Since f 3 = é, the local
2 2 4

5 25
maximum occurs at the point(z, 4). (This is also a
global maximum.)

(b) Since f’(x)>0 on (—oo, i), f(x) is increasing on

-3

(c) Since f’(x) <0 on (;, oo), f(x) is decreasing on

é ()
5
16. (a) g'(x)=2x-1

Since g’(x) <0 on (—oo, ;), g(x)=0atx= %, and
, 1

g’'(x)>0on 5, oo |, we know that g (x) has a local
.. 1

minimum at x = 5

Since g(;) = —?, the local minimum occurs at the
. [1 49 .. ..
point >4 (This is also a global minimum.)
. , 1 .. .
(b) Since g’(x) >0 on E, oo |, g(x) is increasing on

1)

(c) Since g’(x) <0 on (—oo, ;), g(x) is decreasing on
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17. (a) W' (x)= —%
X

Since h’(x) is never zero is undefined only where h(x) is
undefined, there are no critical points. Also, the domain
(—eo, 0) U (0, o0) has no endpoints. Therefore, A(x) has
no local extrema.

(b) Since h’(x) is never positive, h(x) is not increasing on
any interval.

(c) Since h’(x) < 0 on (—oo, 0) U (0, o), h(x) is decreasing on
(—oo, 0) and on (0, o).

18. (a) k'(x)= —%
-

Since k’(x) is never zero and is undefined only where
k(x) is undefined, there are no critical points. Also, the
domain (—ee, 0) U (0, =) has no endpoints. Therefore,
k(x) has no local extrema.

(b) Since k’(x) > 0 on (—, 0), k(x) is increasing on

(=2, 0).
(c) Since k’(x)<0 on (0, =), k(x) is decreasing on (0, ).

19. (a) f'(x)=2¢>"
Since f’(x) is never zero or undefined, and the domain
of f(x) has no endpoints, f(x) has no extrema.
(b) Since f’(x) is always positive, f(x) is increasing on
(—oo, oo),
(c) Since f’(x) is never negative, f(x) is not decreasing on
any interval.
20. (a) f'(x)=-0.5¢">*

Since f’(x) is never zero or undefined, and the domain
of f(x) has no endpoints, f(x) has no extrema.

(b) Since f’(x) is never positive, f(x) is not increasing on
any interval.

(c) Since f’(x) is always negative, f(x) is decreasing on
(—oo, oo),
1

20x+2

In the domain L—2, oo), y” is never zero and is undefined

21.(a) y'=—

only at the endpoint x = —2. The function y has a local
maximum at (-2, 4). (This is also a global maximum.)

(b) Since y” is never positive, y is not increasing on any
interval.

(c) Since y” is negative on (=2, ), y is decreasing on

[-2. ).
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22.(a) y' =4x° —20x = 4x(x +/5)x =/5)
The function has critical points at x = —+/5, x =0, and
x=4/5. Since y’ < 0 on (s, —+/5) and (0, +/5) and
y'>0on (—\/g, 0) and (\/g, o), the points at x = i\/g

are local minima and the point at x =0 is a local
maximum. Thus, the function has a local maximum at

(0, 9) and local minima at (—/5, — 16) and (\/5,— 16).
(These are also global minima.)
(b) Since y" >0 on (—\/g, 0) and (\/g, o), y is increasing on

[—/5, 0] and [/5, o).

(c) Since y’ >0 on (—o0, — \/g) and (0, \/g), y is decreasing
on (—e2,—/5] and [0, /5]

23.

Haximum
H=Z.6666667 IY=3.079201Y4
[—4.7,4.7] by [-3.1,3.1]

1
“D+4—
24— x b+ gy

_ —3x+8

24— x

. . 8
The local extrema occur at the critical point x = 3 and at

(@ f()=x-

the endpoint x = 4. There is a local (and absolute)

maximum at(, 16] or approximately (2.67, 3.08),

3'33

and a local minimum at (4, 0).

(b) Since f’(x)>0 on(—oo, 2), f(x) is decreasing on

(c) Since f’(x) <0 on (i, 4), f(x) is decreasing on
[8, 4]

3 .

24, /

Hinimum
="z

v=-7.559526
[—5, 5] by [—15,15]

4x+8
3,23

() g’(x)=x1/3(1)+§x"2/3(x+8)=

The local extrema can occur at the critical points x = -2
and x = 0, but the graph shows that no extrema occurs at
x=0. There is a local (and absolute) minimum at

(-2,— 632 ) or approximately (-2, —7.56).

(b) Since g’(x) > 0 on the intervals (-2, 0) and (0, ), and
g(x) is continuous at x = 0, g(x) is increasing on [-2, o).
(c) Since g’(x) < 0 on the interval (-, —2), g(x) is

decreasing on (—ee, —2].

—\

Haxirum
"=z

25.

V=25
[—5,5] by [-0.4,0.4]

2+ (=D-(-0)Q2x) x> -4
(2 +4)2 S +4)?

C(x+2)(x-2)

(kP +4)

The local extrema occur at the critical points, x = 2.

(@ h'(x)=

There is a local (and absolute) maximum at(—Z, i)

and a local (and absolute) minimum at(Z, — i)

(b) Since h’(x) >0 on (-0, —2) and (2, =), h(x) is
increasing on (—eo, —2] and [2, o).

(c) Since h’(x) <0 on (=2, 2), h(x) is decreasing on [-2, 2].

U
N

[-4.7,47] by [—3.1,3.1]

P =HO-x20) X’ +4
(x* -4y (x* -4y

Since k”(x) is never zero and is undefined only where

(@) k'(x)=

k(x) is undefined, there are no critical points. Since there
are no critical points and the domain includes no
endpoints, k(x) has no local extrema.

(b) Since k’(x) is never positive, k(x) is not increasing on
any interval.

(c) Since k’(x) is negative wherever it is defined, k(x) is
decreasing on each interval of its domain; on (—ee, —2),
(=2, 2), and (2, ).



27.

28.

/

8

Hinirum
W=.EEB37061 I¥=-Z.63BB9E

[—4,4] by [-6, 6]

(@) f'(x)=3x>-2+2sinx
Note that 3x2~2>2 for | x| > 1.2 and |2 sin x| <2 for
all x, so f’(x) >0 for |x| = 1.2. Therefore, all critical
points occur in the interval (1.2, 1.2), as suggested by
the graph. Using grapher techniques, there is a local
maximum at approximately (-1.126, —0.036), and a
local minimum at approximately (0.559, —2.639).

(b) f (x) is increasing on the intervals (—eo, —1.126] and
[0.559, =), where the interval endpoints are

approximate.

(¢) f (x) is decreasing on the interval [-1.126, 0.559], where
the interval endpoints are approximate.

-

e

[~6, 6] by [—12, 12]

@ g'x)=2-sinx
Since 1 £ g’(x) < 3 for all x, there are no critical points.
Since there are no critical points and the domain has no
endpoints, there are no local extrema.

(b) Since g’(x) > 0 for all x, g(x) is increasing on (—oe, o).

(c) Since g’(x) is never negative, g(x) is not decreasing on
any interval.

2

29, f(x):%+C

30. f(x)=2x+C

31 f()=x"—x+x+C
32. f(x)=-cosx+C

33. f(x)=e" +C

34. f(x)=In (x-1)+C

35.

f(x)=l+C,x>O
X
f@=1
l+C:1
2

Section 4.2

36. fo=x"+cC

fH==2
1"yc==2
1+C=-=2
C=-3
f(x)=x”4 3
37. F)=ln(x+2)+C
fH=3
In(-1+2)+C=3
0+C=3
Cc=3

f)=In(x+2)+3

38. f(x)=x*+x-sinx+C

f0)=3
0+C=3
Cc=3

f(x)=x2+x—sinx+3

39. Possible answers:

(a)
N

[-2, 4] by [-2, 4]

(b) \ﬁ

[-1, 4] by [0, 3.5]

N

[-1, 4] by [0, 3.5]

(c)

40. Possible answers:

/\\

[-1,51by [-2,4]

(b) \\\xmjx/;

[—1,5]by [-1, 8]

171
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40. Continued
(©

[-1,5]by [-1, 8]

(@)

!
[~1,51by [-1,8]

41. One possible answer:

|
%

[-3, 3] by [-15, 15]

42. One possible answer:

/\/

[-3, 3] by [-70, 70]

43. (a) Since v'(t) =1.6, v(t) =1.6t+ C. Butv(0)=0,s0 C=0
and v(f) = 1.6¢. Therefore, v(30) = 1.6(30) = 48. The
rock will be going 48 m/sec.

(b) Let s(r) represent position.
Since s°(t) = v(t) = 1.6t, s(t) = 0.872 + D. But 5(0) =0,
so D =0 and s(r) = 0.8¢2. Therefore,
5(30) = 0.8(30)% = 720. The rock travels 720 meters in
the 30 seconds it takes to hit bottom, so the bottom of
the crevasse is 720 meters below the point of release.

(c¢) The velocity is now given by v(f) = 1.6¢ + C, where
v(0) = 4. (Note that the sign of the initial velocity is the
same as the sign used for the acceleration, since both act
in a downward direction.) Therefore, v(f) = 1.61+ 4,
and s(¢) = 0.8¢2 + 4t + D, where s(0) =0 and so D = 0.
Using s(7) = 0.8¢2 + 4r and the known crevasse depth
of 720 meters, we solve s(f) = 720 to obtain the
positive solution ¢ = 27.604, and so v(f) = v(27.604) =
1.6(27.604) + 4 = 48.166. The rock will hit bottom after
about 27.604 seconds, and it will be going about
48.166 m/sec.

44. (a) We assume the diving board is located at s = 0 and the
water at s = 0, so that downward velocities are positive.
The acceleration due to gravity is 9.8 m/sec?, so

v'(1)=9.8 and v(r) = 9.8t + C. Since v(0) = 0, we have

v(t) = 9.8¢. Then the position is given by s(f) where

s'(t) = (1) = 9.8t, 50 s(t) = 4.9¢” + D. Since 5(0) = 0, we

have s(f)=49¢%. Sloving s(f) = 10 gives

= 10 = @, so the positive solution is t = E The
49 49 7

velocity at this time is v(l;)) = 9.8(170) =14 m/sec.

(b) Again v(¢) = 9.8¢ + C, but this time v(0) = -2 and so
V(1) =9.8t—2. The s’(t) = 9.8t — 2, 50 s(f) =
4.9:2—2¢+ D. Since s(0) = 0, we have s(f) =
4.9:% 21, Sloving s(#) = 10 gives the positive solution
(= 2+10V2

9.8
The velocity at this time is

V[ZHO\/EJ - 9.8[2+91?;/§J— 2=10+/2 m/sec or

=~1.647 sec.

9.8
about 14.142 m/sec.

45. Because the function is not continuous on [0, 1]. The
function does not satisfy the hypotheses of the Mean Value
Theorem, and so it need not satisfy the conclusion of the
Mean Value Theorem.

46. Because the Mean Value Theorem applies to the function
y=sin x on any interval, and y = cos x is the derivative of
sin x. So, between any two zeros of sin x, its derivative,
cos x, must be zero at least once.

47. f(x) must be zero at least once between a and b by the
Intermediate Value Theorem. Now suppose that f( x) is zero
twice between a and b. Then by the Mean Value
Theorem, f’(x) would have to be zero at least once between
the two zeros of f (x), but this can’t be true since we are
given that f’(x) # 0 on this interval. Therefore, f(x) is zero
once and only once between a and b.

48. Let f(x) = x* +3x+1. Then f(x) is continuous and
differentiable everywhere. f’(x) = 4x3 + 3, which is never
zero between x =-2 and x=-1. Since f (-2) = 11 and
f(=1)=-1, exercise 47 applies, and f(x) has exactly one
zero between x = -2 and x =-1.

49. Let f(x) =x+In (x + 1). Then f(x) is continuous and
differentiable everywhere on [0, 3]. f/(x) =1+ %, which
X+

is never zero on [0, 3]. Now £ (0) =0, so x =0 is one
solution of the equation. If there were a second solution,
f(x) would be zero twice in [0, 3], and by the Mean Value
Theorem, f’(x) would have to be zero somewhere between
the two zeros of f(x) .But this can’t happen, since f’(x) is
never zero on [0, 3]. Therefore, f(x) = 0 has exactly one
solution in the interval [0, 3].



50. Consider the function k(x) =f(x) — g(x). k(x) is continuous
and differentiable on [a, b], and since
k(@) =1 (a) - g(@) = 0 and k(b) = £ (b) — g(b) = 0, by the
Mean Value Theorem, there must be a point ¢ in (a, b)
where k’(¢) = 0. But since k’(¢) = f’(¢) — g’(c), this means
that f’(c)— g’(c), and c is a point where the graphs of fand
g have parallel or identical tangent lines.

P
f;;r,gﬁﬁf

(-1, )by [-2, 2]

51. False. For example, the function x°

(1, 1), but £/(0) = 0.

is increasing on

52. True. In fact, f'is the increasing on [a, b] by Corollary to the

Mean Value Theorem.
1

PR
53. A. f ()C):?:—E.
3
P A GO A (Y]
54.B. f'(x)= 40
_3.78-2980.96
T 4-0

=—744.30, negative slope.

55.E L (2Jx-10)
dx
_ 2 _ 1
2x x|
56. D. x*is not differentiable at x = 0.

57. (a) Increasing: [-2, —1.3] and [1.3, 2];
decreasing: [-1.3, 1.3];
local max: x =—1.3
local min: x = 1.3

(b) Regression equation: y = 3x% -5

N/

N

[-2.5, 2.5] by [-8, 10]

(¢) Since f’(x)=3x2 =5, we have f(x)= x> —5x+C.
But £(0)=0, so C = 0. Then f(x) =x° - 5x.
58. (a) Toward: 0<r<2and S5<r<8;away:2<r<5

(b) A local extremum in this problem is a time/place where
Priya changes the direction of her motion.
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(¢) Regression equation:
y=-0.0820x" +0.9163x* - 2.5126x +3.3779

|

[—0.5, 8.5] by [-0.5, 5]

(d) Using the unrounded values from the regression
equation, we obtain
F/(t)=-0.24591> +1.8324¢ - 2.5126. According to the
regression equation, Priya is moving toward the motion
detector when f'(1) <0 (0 <t <1.81 and 5.64 <t <8),
and away from the detector when
f/(®>0(1.81<t<5.64).

11
50 JO=f@ _b a__1

b-a  b-a ab

f’(c)=—iz, ) —iz—i and ¢ = ab.
c

62 a
Thus, c=+ab.

2 2
60. J)=fla) _b"=a” _
b—a b—a

b+a

F(e)=2¢, 50 2c=b+a andc=¥.

61. By the Mean Value Theorem, sin b — sin a = (cos ¢)(b — a)
for some ¢ between a and b. Taking the absolute value of

both sides and using ‘cosc‘ <1 gives the result.

62. Apply the Mean Value Theorem to f on [a, b].

Since f(b) < f(a), w is negative, and
—a
hence f’(x) must be negative at some point between

a and b.

63. Let f(x) be a monotonic function defined on an interval D.
For any two values in D, we may let x be the smaller value
and letx be the larger value, so x; < x,.Then either
f(x) < f(x,) (if fis increasing), or f(x,) > f(x,) (f f is
decreasing), which means f(x,) # f(x,). Therefore, f is
one-to-one.

Section 4.3 Connecting f” and f” with the
Graph of f (pp. 205-218)

Exploration1 Finding f from f”

1. Any function f(x) = x* —4x® + C where C is a real number.
For example, let C =0, 1, 2. Their graphs are all vertical
shifts of each other.

2. Their behavior is the same as the behavior of the function
fof Example 8.
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Exploration 2 Finding f from f’ and £~ 10. Left end behavior model: 0
Right end behavior model: 375

1. fhas an absolute maximum at x = 0 and an absolute Horizontal asymptotes: y = 0, y = 375

minimum of 1 at x =4. We are not given enough

information to determine f (0). Section 4.3 Exercises
2. fhas a point of inflection at x = 2. 1.y =2x-1
3.
1 1
Intervals x<— xX>—
2 2
Sign of y’ - +
[—3, 5] by [—5, 20] Behavior of y Decreasing Increasing

i i Graphical t:
Quick Review 4.3 raphical suppor

1. x2-9<0 \ /

(x+3)(x-3)<0 \'w/
Intervals ‘ x<-3 ‘ -3<x<3 ‘ 3<x ﬂ‘-.'!‘;"‘““‘ v=-1.25
Sign of [—4,4] by [-3, 3]
(x+3)(x—3) * - + 15
Local (and absolute) minimum at| —,——
Solution set: (-3, 3) 2 4
r_ g2 - _
2. ¥ —dx>0 2. ¥ =—6x"+12x =—-6x(x—2)
x(x+2Xx=2)>0 Intervals x<0 O<x<2 2<x
Intervals ‘ x<-2 ‘ —2<x<0 ‘ O<x<2 ‘ 2<x Sign of y’ - + -
Sign of Behavior of y Decreasing Increasing Decreasing
(x+2)Xx—-2) * - *
* Graphical support:
Solution set: (=2, 0) U (2, )
3. f: allreals \
[ all reals, since f’(x)=xe" +e* l\/ \
Haximum
4. f: all reals =2 ¥=5

[—4. 4] by [-6, 6]

[ x#0, since f'(x)= éx_y5
5 Local maximum: (2, 5);

local minimum: (0, -3)

5. fix#2
-2)()-(x)1 -2 3.y =8x" —8x=8x(x—1) (x+1
£ x 2, since 1y = CT2O=@WO 2 ¥ =8x" —8x =8x(x—1) (x+1)
(x=2) (x=2) Intervals x<-1 -1<x<0 0<x<l1 1<x
6. f: all reals Sign of y’ B + B R
7 3 ’ 2 -
f’ x#0, since f'(x) = gx 315 Behavior . . . :
R Decreasing | Increasing | Decreasing | Increasing
7. Left end behavior model: 0 of y
Right end behavior model: —x*e* Graphical support:
Horizontal asymptote: y =0
8. Left end behavior model: x2¢™ \ T ’
Right end behavior model: 0 W "‘,&'
Horizontal asymptote: y =0 Hinimmurs -
9. Left end behavior model: 0 [—4, 4] by [-3, 3]
Right end behavior model: 200 Local maximum: (0, 1);

Horizontal asymptote: y — 0, y = 200 local (and absolute) minima: (-1, —1) and (1, —1)



4.y = xeF (cx )4 el = o (1_1)

X
Intervals x<0 O<x<l1 1<x
Sign of y’ + - +
Behavior of y Increasing Decreasing Increasing
Graphical support:
.
BEMU™ ly=z.71zene

[—8,8] by [—6, 6]

Local minimum: (1, ¢)

5 Y= x— (2 + (8- ()= S

248 —x2 V8—x

2
2

Intervals —J8<x<=2 2<x<2 2<x<\/§
Sign of y’ - + _
Behavior of y Decreasing Increasing | Decreasing
Graphical support:
B ey

[—3.02, 3.02] by [—6.5, 6.5]

Local maxima: (—\/g, 0) and (2, 4);
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7.y =12x% +42x+36 = 6(x +2) (2x +3)
3
Intervals x<-2 —2<x< 5 -—<x
Sign of y’ + - +
Behavior of y | Increasing Decreasing Increasing
v’ =24x+42=6(4x+7)
7 7
Intervals xX<—— -——<x
4 4
Sign of y’ - +
Behavior of y Concave down Concave up
Graphical support:

i
/

§=-15 v=-40.25
[—4, 4] by [—80, 20]

7
(a) (—4, °°)
7
(b) (—w, —4)

8.y =—4x>+12x* —4
Using grapher techniques, the zeros of y” are x = —0.53,
x=0.65, and x = 2.88.

local minima: (-2, 4) and (\/8, 0) Imervals | x <053 | 2053 <x<065 | 065<x<288 | 2.88<x
Note that the local extrema at x = £ 2 are also absolute R
Sign of y + - + -
extrema.
—2x x<0 Behavior of y Increasing Decreasing Increasing Decreasing
6. y = ’
Y Fox, x>0 Y =—12x> + 24x = —12x(x—2)
Intervals x<0 x>0 Intervals x<0 O<x<2 2<x
Sign of y’ + + Sign of y” - + -

Behavior of y Increasing Increasing Behavior of y | Concave down | Concave up Concave down
Graphical support: Graphical support:

N

/

[=4,4] by [-3, 6]

Local minimum: (0, 1)

-

H=:B7O3H36 Ys16.234422
[=2, 4] by [-20, 20]

(@) (—oo, —0.53] and [0.65, 2.88]
(b) [-0.53, 0.65] and [2.88, =)
(© 0,2)

(d) (=o°, 0) and (2, )
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8. Continued

(e) Local maxima: (-0.53, 2.45) and (2.88, 16.23); local
minimum: (0.65, —0.68)
Note that the local maximum at x = 2.88 is also an
absolute maximum.

(f) (0, 1) and (2, 9)

Graphical support:

T
“b—‘_‘_‘-—\_

[—8, 8] by [0, 10]

F_2 s
9.y = gx_4/ >
Intervals x<0 O<x
Sign of y’ + +
Behavior of y Increasing Increasing
”_ _%x—ws
Intervals x<0 O<x
Sign of y” + -
Behavior of y Concave up Concave down
Graphical support:
(__ﬂ___,__a-
—
[—6, 6] by [1.5, 7.5]
(a) (~o, o)
(b) None
(€) (=<, 0)
(@) (0, =)
(e) None
® (0, 3)
s 1
10. y' = —gx 03
Intervals x<0 O<x
Sign of y’ - -
Behavior of y Decreasing Decreasing
”_ Ex—sn
Intervals x<0 O<x
Sing of y” - +
Behavior of y Concave down Concave up

l\

[=2,3]by [-5,3]
(a) None
(b) (1, =)

12. y'=¢"

y// — ex

(@) (0,0)
(b) (===,0)
2 x<1
11. y'=47"
Y {—Zx, x>1
Intervals x<1 l<x
Sign of y’ + _
Behavior of y Increasing Decreasing
»_ 40, x<l1
A ) x>1
Intervals x<1 l<x
Sing of y” 0 _
Behavior of y Linear Concave down
Graphical support:

Since y” and y” are both positive on the entire domain, y is
increasing and concave up on the entire domain.

Graphical support:

[0, 27r] by [0, 20]
(a) (0,27)
(b) None



y” =24x-12x"
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13. y=xe*
y=e"+xe'
Intervals x<-1 x>-1
Sign of y’ - +
Behavior of y Decreasing Increasing
' =2¢" +xe*
Intervals x<-2 x>-2
Sign of y” - +
Behavior of y Concave down Concave up

3

Y =y9-x? - =0
9—x?
2
Intervals —3<x<—ﬁ —ﬂ<x ﬁ ﬁ<x<3
2 2 2 2
Sign
of y’ - + -
Behavior Decreasing Increasing Decreasing
of y
" 3x x? _
Y __(9—x2)1/2 + 9—x2)¥? -
y'=0 atx=0
Intervals -3<x<0 0<x<3
Sign of y” + -
Behavior of y Concave up Concave down
1
15. y' =
1+x2
since y” > 0 for all x, y is always increasing:
d - - -2
V=) =) P @ =
dx 1+x7)
Intervals x<0 O<x
Sign of y” + -
Behavior of y Concave up Concave down
0,0
16. y=x’(4-x)
y =12x> —4x°
Intervals x<0 0<x<3 x>3
Sign of y’ + + -
Behavior of y Increasing Increasing Decreasing

Intervals x<0 O<x<?2 x>2
Sign of y” - + -
. Concave Concave Concave
Behavior of y
down up down
(0,0) and (2,16)
17. y= xB(x—d)=x*3 _ax"
,:ixm_fx—m _ 4x-4
3 3 3x2/3
Intervals x<0 O<x<l1 1<x
Sign of y’ - - +
Behavior of y Decreasing Decreasing | Increasing
4 _ 8 _ 4x+8
V' =—x 23, O 53 _ X
9 9 9x5/3
Intervals x<-=2 2<x<0 O<x
Sign of y” + - +
. Concave Concave Concave
Behavior of y
up down up

18.

(=2,632) = (=2,7.56) and (0, 0)

y= xl/z(x+3)

P BT
=—x
Y73

no critical points

for y”.

1 x-=3

= e - 4(x)"? =

”

(x+3)+x"? yis always increasing, so there are

19.

Intervals O<x<l1 x>1
Sing of y” + -
Behavior of y Concave up Concave down
1,4

We use a combination of analytic and grapher techniques to
solve this problem. Depending on the viewing window
chosen, graphs obtained using NDER may exhibit strange
behavior near x = 2 because, for example,
NDER (y, 2) = 1,000,000 while y” is actually undefined at

x=2. The graph

3 2
-2
ofy:x X

xX—

vV

T

[—4,7,4.7] by [—

5, 15]

+x—1

is shown below.
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19. Continued

, (x=2)Bx* —4x+1)—(x’ —2x7 +x—-1)(1)
v (x-27

20 -8x" +8x-1

S -2

The graph of y” is shown below.

V

T\

|

[—4.7, 4.7] by [—10, 10]

The zeros of y” are x = 0.15, x = 1.40, and x = 2.45.

e (7 +D*(20) = (X" + D) (=" + D (2x)

x2+1D*

_ P HD(20—4x(=x +1)

*+1)?
22X —6x  2x(x*-3)

2D ()]

Intervals x<—\/§ —/3<x<0 O<x<\/§ \/§<x
Sign
of y” - + - +
Behavior | Concave Concave
Concave up Concave up
of y down down

Intervals | x<0.15 [0.15<x<140[140<x<2| 2<x<245 | 245<x
Sign - + - - +
of y

Beh;lvior Decreasing | Increasing | Decreasing | Decreasing | Increasing
ofy

. (x=2)2(6x> —16x+8)— (2x” —8x” +8x—1)(2)(x —2)
T (-2
_(x=2)(6x" —16x+8)—2(2x" —8x” +8x—1)
) (x-2)’
_2x7—12x7 +24x - 14
RS
_2(x—D(x*=5x+7)
IRCErS

The graph of y” is shown below.

_

2ero
w=1 Y=0

[—4,7,4.7] by [—10, 10]

Note that the discriminant of x> —5x +7 is

(=5)* = 4(1)(7) = -3, so the only solution of y” =0 isx= 1.

Intervals x<1 l<x<?2 2<x
Sign of y” + - +
. Concave Concave Concave
Behavior of y
up down up
1, n
, (P -x2x)  —x*+1
20. y'= 2.2 T2
x“+D (x“+D
Intervals x<-1 -l<x<1 l<x
Sign of y’ - + -
Behavior of y Decreasing Increasing Decreasing

, 0),[@,?} and[—\/i—\f)

21. (a) Zero: x =1,
positive: (—eo, —1) and (1, o0);
negative: (-1, 1)

(b) Zero: x=0;

positive: (0, 0);
negative: (—eo, 0)

22. (a) Zero: x = 0, = 1.25;
positive: (—=1.25, 0) and (1.25, oo);
negative: (—oo, —1.25) and (0, 1.25)

(b) Zero: x =% 0.7,
positive: (—eo, —0.7) and (0.7, o0);
negative: (0.7, 0.7)

23. (a) (~o0, —2] and [0, 2]
(b) [-2, 0] and [2, =)

(¢) Local maxima: x =-2 and x = 2;
local minimum: x =0

24. (a) [-2, 2]
(b) (=e0, —2] and [2, o)

(¢) Local maximum: x = 2;
local minimum: x = -2

25.(a) v(t)=x'(1) =2t — 4
() a(t)=v'(t)=2

(c) It begins at position 3 moving in a negative direction. It
moves to position —1 when 7= 2, and then changes
direction, moving in a positive direction thereafter.

26. (a) v(H)=x"(t)=—2-2¢
) a()=v'(t)=-2

(¢) In begins at position 6 and moves in the negative
direction thereafter.

27.(a) v(t)=x"(1) =3t -3
(b) a(®)=Vv'(t) =6t



27. Continued

(c) It begins at position 3 moving in a negative direction. It
moves to position 1 when ¢ =1, and then changes
direction, moving in a positive direction thereafter.

28. (a) v()=x'() = 61— 61°
(b) at)=Vv'(t)=6-12¢

(c) It begins at position 0. It starts moving in the positive
direction until it reaches position 1 when 7 =1, and then
it changes direction. It moves in the negative direction
thereafter.

29. (a) The velocity is zero when the tangent line is horizontal,
at approximately t = 2.2,r= 6andt =9.8.

(b) The acceleration is zero at the inflection points,

approximately t =4, r=8 and t=11.

30. (a) The velocity is zero when the tangent line is horizontal,
at approximately r =-0.2, r=4,and ¢ =12.

(b) The acceleration is zero at the inflection points,

approximately r=1.5, t=5.2, t=8, r=11, andr =13.

31. Some calculators use different logistic regression equations,
SO answers may vary.

@ y= 12655.179
1+12.871¢70-0326¢

(b)

[0, 140] by [-200, 12000]

12655.179
(© y=

112,871 00326050
remarkably close to the 2000 census number of
12,281,054.)

=12,209,870. (This is

(d) The second derivative has a zero at about 78, indicating
that the population was growing fastest in 1898. This
corresponds to the inflection point on the regression
curve.

(e) The regression equation predicts a population limit of
about 12,655,179.

32. Some calculators use different logistic regression equations,
SO answers may vary.
28984386.288

@y=——"—"—+
Y 1+49.252¢70851

(b)

[0, 91 by [-3.1 X10% 3.2 X107]

Section 4.3 179

(¢) The zero of the second derivative is about 4.6, which
puts the fastest growth during 1981. This corresponds to
the inflection point on the regression curve.

(d) The regression curve predicts that cable subscribers will
approach a limit of 28,984,386 + 12,168,450 subscribers
(about 41 million).

33, y=3x—x’+5

y' =3-3x"
Yy’ =—6x
y=0at*l.

y”(=1)>0and y”(1) <0, so there is a local minimum at
(-1, 3) and a local maximum at (1,7).

34, y=x"—80x+100

y =5x*-80
v’ = 20x3
y=0at+2

y”(=2) <0 and y”(2) > 0, so there is a local maximum at
(-2, 228) and a local minimum at (2, —28).

3s. y=x3+3x2—2
y =3x2 +6x
V' =6x+6

y'=0at —2 and 0.
y'(=2)<0,y"(0)>0,
so there is a local maximum at (-2, 2) and a local minimum
at (0, -2).

36. y =3x° - 25x> +60x+20

v =15x* =75x% +60
y”= 60x° —150x
y'=0atxland 2.
Y (=2)<0,y"(-1)>0
y”(1)<0, and y”(2) > 0;
so there are local maxima at (-2, 4) and (1, 58), and there
are local minima at (-1, —18) and (2, 36).

37. y=xe'
Y =(x+1)e"
Y =(x+2)e*
y'=0at —1.
y” (=1) >0, so there is a local minimum at (—1,—1/¢).
38. y=xe™*
y=(>10-x)"
y,’ - (x — 2)e7X
y'=0atl

y” (1) <0, so there is a local maximum at (1, 1/e).

39. y=(x—1)*(x-2)

Intervals x<1 l<x<2 2<x
Sign of y’ - - +
Behavior of y | Decreasing Decreasing Increasing
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39. Continued

Y =@ =D+ (x-2)(2)(x~1)
=(x-Di(x—D)+2(x-2)]

=(x-1D)Bx-5)
Intervals x<1 l<x<§ §<x
3 3
Sign of y” + - +
. Concave Concave Concave
Behavior of y
up down up

(a) There are no local maxima.

(b) There is a local (and absolute) minimum at x = 2.

(¢) There are points of inflection at x =1 and at x = %

40.y=(x—1) (x=2)x—4)

Intervals x<1 1<x<2 2<x<4 4<x
Sign of y” + + - +
Behavior . . . .
£y Increasing | Increasing | Decreasing | Increasing
o

V= i[(x— D2 (x> —6x+8)]
dx

=(x=1D2Q2x—6)+ (x> —6x+8)(2)(x=1)
=(x=D(x=12x=6)+2(x* —6x+8)]

=(x—1)(@x*=20x+22)
=2(x=1)(2x* =10x+11)

Note that the zeros of y” are x = 1 and

L lox V102 =4(2x11)

4

5+3

=1.630r3.37.

_10+412
4

The zeros of y” can also be found graphically, as shown.

2%Fa
H=1.6338

N
\

3743 ¥=0

[=3,7]by [-8,4]

Intervals x<1 1<x<1.63 1.63 <x<3.37 337<x
Si
e - + - +
of y
Behavior | Concave Concave
Concave up | Concave down
of y down up

(a) Local maximum at x =2

(b) Local minimum at x =4

(¢) Points of inflection at x =1, at x = 1.63, and at x = 3.37.

41. y
y=fx)

y=£(x)

y=r'®

4. Y

43. No f must have a horizontal tangent at that point, but f could
be increasing (or decreasing), and there would be no local
extremum. For example, if f(x)=x3, f'(0)=0 but there is
no local extremum at x = 0.

44. No. f”(x) could still be positive (or negative) on both sides
of x = ¢, in which case the concavity of the function would
not change at x = ¢. For example, if f(x)=x*, then
f”(0)=0, but f has no inflection point at x = 0.

45. One possible answer:

y
5+
1 1 1 1 1 1 1 1 1 1
5 i 5"
5k
46. One possible answer:
¥
b
5k
1 1 L — L1 L
=5 i 5
5}




47. One possible answer:
y
(-2,8) 10

-10

48. One possible answer:

49. (a) [0, 1], [3, 4], and [5.5, 6]
(b) [1, 3] and [4, 5.5]
(¢) Local maxima: x=1,x=4
(if f is continuous at x = 4), and x = 6;
local minima: x=0, x=3, and x=5.5
50. If fis continuous on the interval [0, 3]:
(@) [0, 3]
(b) Nowhere
(¢) Local maximum: x = 3;
local minimum: x =0

51. (a) Absolute maximum at (1, 2);
absolute minimum at (3, -2)

(b) None
(¢) One possible answer:
y
r y=f@)
1 -
1 2 3
1k
oL

52. (a) Absolute maximum at (0, 2);
absolute minimum at (2, —-1) and (-2, -1)

(b) At (1, 0) and (1, 0)
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(c¢) One possible answer:
y

(d) Since f'is even, we know f(3) = f(=3). By the continuity
of f, since f(x) <0 when2<x<x< 3, we know
that £(3) <0, and since f(2)=—1and f’(x)>0
when 2 < x <3, we know that f(3) >—1. In summary, we
know that f(3) = f(-3),-1< f(3) <0,
and—-1< f(-3)<0.

Y W B
T 1

-1}
2}
=3

55. False. For example, consider f(x) = x*ate=0.

56. True. This is the Second Derivative Test for a local
maximum.

57. A. y=a)c3+3x2 =4x+5 saya=-2

Y =—6x> +6x+4

y'=-12x+6
1
"=0at —
Y 2
Interval x<1/2 x>1/2
Sign of y” + -
Behavior of y Concave up Concave down

58.E.
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59.C. y=x"=5x"+3x+7
y' =5x*—20x>+3
¥ =20x" —60x”

y'=0at3
Interval x<3 x>3
Sign of y” - +
Behavior of y Concave down Concave up

3 is an inflection point.

60. A.

61. (a) In exercise 13, a=4 and b=21, so —32 = —%, which is
a

the x-value where the point of inflection occurs. The

3 .
local extrema are at x =-2 and x = —5, which are
. 7
symmetric about x = R

(b) In exercise 8,a=-2 and b =6, so —32 =1, whichis
a

the x-value where the point of inflection occurs. The
local extrema are at x = 0 abd x = 2, which are

symmetric about x = 1.

(¢) f'(x)=3ax?+2bx+c and
f7(x)=6ax+2b.
The point of inflection will occur where
f”(x)=0, whichis at x = —2.

3a

If there are local extrema, they will occur at the zeros
of f’(x). Since f’(x) is quadratic, its graph is a parabola
and any zeros will be symmetric about the vertex which
will also be where f”(x) = 0.

(1+ae ") (0) = (c)(-abe ™)
(1+ae™™)?
bx

62.(a) f'(x)=

abce”

C (1+ae)>
_ abce™

- ™ +ay’
so the sign of f’(x) is the same as the sign of abc.
(™ +a)* (ab*ce™ ) — (abce™)2(e™ +a) (be™)
(ebx +a)4
B (" + a)(ab®ce™ ) — (abce®™ ) (2be™)
€ +a)’
ab*ce™ (e —a)

™ +a)’

(b) f"(x)=

1
Since a > 0, this changes sign when x = % due to the

e — a factor in the numerator, and f(x) has a point of
inflection at the location.

63.(a) f'(x)=4ax’ +3bx” +2cx+d

F7(x)=12ax* +6bx +2¢

Since is f”(x) quadratic, it must have 0, 1, or 2 zeros. If
f (x)has O or 1 zeros, it will not change sign and the
concavity of f (x) will not change, so there is no point
of inflection. If f”(x) has 2 zeros, it will change sign
twice, and f(x) will have 2 points of inflection.

(b) If f has no points of inflection, then f”(x) has 0 or

1 zeros, so the discriminant of f”(x) is <0. This gives
(6b)* —4(12a)(2¢) £0, or 3b% < 8ac. If fhas 2 points of
inflection, then f”(x) has 2 zeros and the inequality is
reversed, so 3b2 > 8ac. In summary, fhas 2 points of
inflection if and only if 3b* > 8ac.

Quick Quiz Sections 4.1-4.3

1.(© f/(x)=5(x-2*(x+3)* +4(x-2°(x+3)* =0
x=—3,—z,2
9
2.0) f/(x)=(x-3)" +2(x=2)(x—3)=0
Fx)=(x=-3)3x-7)=0

x:z,3

3

3.B) x2-9=0
x=13

4. (a) 43 X2 +2)-2x
dx

2
=3—"—-2=0
x“+2
x=12
Intervals —2<x<l1 I<x<2 2<x<4

Sign of y” - + -
Behavior of Decreasing Increasing Decreasing

y

fhas relative minima at x =1 and x =4 fhas relative

maxima at x = £2

(b) f”(x):;x( 6x 2)

242

6 12x2
frx)= =0
242 (2+2)7?

xzix/z

fhas points of inflection at x = i\/z

(¢) The absolute maximum is
atx=-2and f(x)=3In6+4.



Section 4.4 Modeling and Optimization
(pp. 219-232)

Exploration 1 Constructing Cones
1. The circumference of the base of the cone is the
circumference of the circle of radius 4 minus x, or 87 — x.

Thus, r= 87— x

Y Use the Pythagorean Theorem to find £,
T

and the fomula for the volume of a cone to find V.

2. The expression under the radical must be nonnegative, that

8m— ’
is,16—( x] >0.
2r

Solving this inequality for x gives: 0 < x <167.

[0, 167] by [— 10, 40]

3. The circumference of the original circle of radius 4 is 8 7.
Thus, 0 < x <8m.

[~

[0, 84r] by [—10, 40]

4. The maximum occurs at about x = 4.61. The maximum

volume is about V = 25.80.
5. Start with & = 2% 4 L 2 dh
dx 3 dx 3 dx

Compute dr and @, substitute these values in
dx dx
dav
Ev
86—V _
3

set % =0, and solve for x to obtain

4.61.

12873

27

Then V=

=25.80.

Quick Review 4.4
1.y =3x> —12x+12=3(x - 2)*
Since y" >0 forall x (and y” >0 forx # 2), y is increasing
on (—oo,oo) and there are no local extrema.
2. Y =6x2+6x—12=6(x+2)x—1)
y'=12x+6
The critical points occur at x =-2 orx =1, since y’=0 at

these points. Since y”(-2)=—18 <0, the graph has a local
maximum at x = —2. Since y”(1) =18 > 0, the graph has a

10.
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local minimum at x = 1. In summary, there is a local
maximum at (—2, 17) and a local minimum at (1, —10).

200 5
——cm

15,1 2
V=—nrh=—mn(5)"8)=
3" 3()() 3

. V=mr’h=1000

SA = 27mrh+27mr? =600

Solving the volume equation for & gives =

r
Substituting into the surface area equation gives
2
2000 +27r? =600. Solving graphically, we have
-

r=-11.14,r =4.01, orr = 7.13. Discarding the negative

value and using A = to find the corresponding values

7tr2

of h, the two possibilities for the dimensions of the
cylinder are:

r=4.01cmand 2 =19.82cm, or,

r=7.13cmand h=6.26cm.

. Since y =sinx is an odd function, sin (—o) = —sin .
. Since y = cosx is an even function, cos (—o) = cos .

. sin(zr — o) = sin 7T cos o — cos T Sin &

=0cosa—(—=1)sinx

=sina
. CoS(T — &¢) = cOS T CoS O — Sin T sin
=(=1)cosax+0sinx
=—coso
. x2+y2=4 andy=\/§x
)cz+(\/§x)2 =4
2432 =4
4x* =4
x==1

Since y= \/gx, the solution are:

x=1and y=\/§, or, x=-1 andyz—\/g.
In ordered pair notation, the solutions are

(1,V3) and (—1,-/3).

2 2
x—+y—=landy:x+3
49

£+(x+3)2:l
4 9

9x% +4(x+3)2 =36
9x% +4x> +24x+36=36
13x2+24x=0
x(13x+24)=0
24

x=0orx=——
13
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10. Continued
Since y=x+3, the solutions are:
24 15
x=0andy=3,or,x=——and y—.
13 13
In ordered pair notation, the solution are (0, 3) and

2415
13°13)

Section 4.4 Exercises

1. Represent the numbers by x and 20 — x, where 0 < x <20.

(a) The sum of the squares is given by
F(x)=x?+(20-x)> =2x2 —40x +400. Then
f’(x) =4x—40. The critical point and endpoints occur
at x=0,x=10, and x =20. Then ' (0) = 400, £ (10) =
200, and f (20) = 400. The sum of the squares is as large
as possible for the numbers 0 and 20, and is as small as
possible for the numbers 10 and 10.

Graphical support:

N

Minimum

A0 sl V2200 s

[0, 20] by [0, 450]
(b) The sum of one number plus the square root of the other
is given by g(x)=x++20-x. Then

1
g’(x) =1———=. The critical point occurs when
2420 -x

2m= 1, s020 — x= i and x = 74—9 Testing the
endpoints and critical point, we find g(0) = \/2_ =

4.47, g(749) = % =20.25, and g(20) =20. The sum is
as large as possible when the numbers are

B and i (summjng749 + \/z], and is as small as

possible when the numbers are 0 and 20
(summing 0 + \/% ).
Graphical support:

/

Haximum
¥=18.7E ¥=20.25

[0, 20] by [—10, 25]

2. Let x and y represent the legs of the triangle, and note that
0<x<5.Then x? +y2 = 25, so y=\/25—x2

(since y > 0). The areais A= %xy = lxv 25-x2,

2
) @:lx;(—Zx)+i\/25—x2
dx 2 9\25- 42 2
25-2x2

N

The critical point occurs when 25— 2x* =0, which means

5
x =—=, (since x > 0). This value corresponds to the largest

V2
dA

possible area, since % >0forO0<x< S and <—<0

2 dx

fori<x <5.When x= , we have

5
V2 V2
2
y= 25—(5 and A:;xyzl(s] =275_

E
V2) 2 2\V2) 4

2
Thus, the largest possible area is Iscmz, and the

5 5
dimensions (legs) are —=cm by —=cm.
V2 V2

Graphical support:

Haximum
#=3.53E5338 Y=6.25

[0, 5]by [-2,7]

3. Let x represent the length of the rectangle in inches (x > 0).

Then the width is 16 and the perimeter is
X

P(x)=2(x+l6)=2x+32.
X

X

2(x* - 16)

X
occurs at x =4. Since P’(x) <0 forO<x <4 and
P’(x)> 0 for x > 4, this critical point corresponds to the
minimum perimeter. The smallest possible perimeter is
P(4)=16in., and the rectangle’s dimensions are 4 in.
by 4 in.

Since P'(x)=2- 32x7% = this critical point

Graphical support:

Hinimum
H=y

Y216 i

[0, 20] by [0, 40]
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4. Let x represent the length of the rectangle in meters Graphical support:
(0 < x <4). Then the width is 4 — x and the area is
A(x)=x(4—x)=4x—x2. Since A’(x) =4 —2x, the critical
point occurs at x =2. Since A’(x)>0 for0<x <2
and A’(x) <0 for 2 < x <4, this critical point corresponds
to the maximum area. The rectangle with the largest area Ragirur

¥=3z

measures 2 m by 4 — 2 =2m, so it is a square. [0, \/ﬁ] by [~ 10, 40]
Graphical support: .
7. Let x be the side length of the cut-out square (0 < x < 4).

Then the base measures 8 — 2x in. by 15 — 2x in., and the

volume is

V(x)=x(8—2x)(15—2x) = 4x> — 46x> +120x. Then
REEMUM oy V’(x) = 12x% =92x +120 = 4(3x — 5) (x —6).

[0,4] by [—1.5, 5] L o 5 .
Then the critical point (in 0 < x < 4) occurs at x =—. Since
5. (a) The equation of line AB is y=—-x+1, so the 3

y-coordinate of Pis —x + 1. V'(x)>0forO<x< g and V’(x) <0 for g <x<4,

(b) A(x)=2x(1-x) the critical point corresponds to the maximum volume.

(c) Since A’(x)= di(Zx —2x2)=2—4x, the critical point The maximum volume is V(Z) = % ~90.74in>, and the
X

1 1
occurs at x =5 .Since A’(x) >0forO<x< 5 and dimensions are é in. by E in. by ﬁ in.
3

A’(x) <0for — <x< 1, this critical point corresponds Graphical support:

to the maximum area. The largest possible area is

1 1 . . .
A(zj = > square unit, and the dimensions of the

Haximum
=1.66B6667 Y=590.740741

[0, 4] by [—25, 100]

1
rectangle are > unit by 1 unit.

Graphical support: 8. Note that the values @ and b must satisfy a*+b*=20% and

50 b=1400—q*. Then the area is given by

Azéabzéa 400—a® for 0 <a <20, and

== qa_ la[l ](—2a)+;m

Naximum
A=k

[0, 1] by [—0.5, 1] da 2 24400 - a®

6. If the uppir right vertex of the rectangle is located at = a® +(400—a?) 200 >
(x, 12—x )f0r0<x<\/ﬁ, then the rectangle’s 2\/400_a2 \/400—a2

. The critical point occurs

dimensions are 2x by 12— x* and the area is
A (x)=2x(12—-x%)=24x-2x". Then

’ 2 .s .
A’(x)=24—6x> =6(4—x?), so the critical point Z—A <0 for v200 < a < 20, this critical point corresponds to
a

(forO<x < \/ﬁ ) occurs at x = 2. Since
the maximum area. Furthermore, if a=+/200 then
A’(x)>0 for0 < x <2 and A’(x) < 0 for 2 < x < /12, this

—Jaon_ 2 = :
critical point corresponds to the maximum area. The largest b=v400-a 200, so the maximum area occurs when

possible area is A(2) =32, and the dimensions are a=b.
4 by 8.

A
when a® = 200. Since Z— >0 for0 <a<+200 and
a
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8. Continued
Graphical support:

Haximum
H=ihiNziz6 ¥=100
[0, 20] by [—30, 110]

9. Let x be the length in meters of each side that adjoins the
river. Then the side parallel to the river measures 800 — 2x
meters and the area is

A(x) = x(800—2.x) = 800x — 2x> for 0 < x < 400.
Therefore, A’(x)=2800—4x and the critical point occurs at
x=200. Since A’(x)>0 for 0 < x <200 and

A’(x) <0 for 200 < x <400, the critical point corresponds
to the maximum area. The largest possible area is

A(200) = 80,000 m? and the dimensions are 200 m
(perpendicular to the river) by 400 m (parallel to the river).

Graphical support:
Haximum
H=Z00 ¥=B0000

[0, 400] by [—25,000, 90,000]

10. If the subdividing fence measures x meters, then the pea

21
patch measures x m by 216 m and the amount of fence
X

21
needed is f(x)=3x+ 2—6 =3x+432x". Then
x

f(x)=3—- 432x7% and the critical point (for x > 0) occurs
at x=12. Since f’(x)<0 for0<x<12 and
f/(x) >0 forx > 12, the critical point corresponds to the

minimum total length of fence. The pea patch will measure
12 m by 18 m (with a 12-m divider), and the total amount
of fence needed is f(12) =72m.

Graphical support:

Hinimum

L T, L ere——

[0, 40] by [0, 250]

11. (a) Let x be the length in feet of each side of the square
base. Then the height is @ ft and the surface area (not

including the open top) is

S(x)= X+ 4){5020) =x2 +2000x". Therefore,
X

2(x* —1000)

X
point occurs at x = 10. Since S’(x) <0 for0<x <10

§’(x)=2x—2000x"2 = and the critical

and S’(x) >0 forx > 10, the critical point corresponds
to the minimum amount of steel used. The dimensions
should be 10 ft by 10 ft by 5 ft, where the height is 5 ft.

(b) Assume that the weight is minimized when the total
area of the bottom and the four sides is minimized.

12. (a) Note that xzy =1125,s0y = g Then
X

¢ =5(x* +4xy)+10xy
=5x%+30xy

=542 +30x(1135)

X
=5x%+33,750x7"

10(x> —3375)
2

LT 33,750x7% =
dx x

The critical point occurs at x = 15. Since % <0 for
x

O<x<15and % >0 forx > 15, the critical point
X

corresponds to the minimum cost. The values of x and y
arex=15ftand y =5 ft.

(b) The material for the tank costs 5 dollars/sq ft and the
excavation charge is 10 dollars for each square foot of
the cross-sectional area of one wall of the hole.

13. Let x be the height in inches of the printed area. Then the

width of the printed area is 30 in. and the overall
X

dimensions are x + 8 in. by $+ 4 in. The amount of paper
X

used is A(x)= (x+8)(50+4j = 4x+82+@ in”. Then
X X

A'(x)=4-400x"% =

2 —
Lzl()()) and the critical point

X
(for x > 0) occurs at x = 10. Since A’(x) <0 for 0 <x <10

and A’(x) >0 forx > 10, the critical point corresponds to

the minimum amount of paper. Using x + 8 and 570 +4 for

x =10, the overall dimensions are 18 in. high by 9 in. wide.
14. (a) s(r)=—16¢> +96¢+112

v(t) =s"(t) =-32t+96
At t =0, the velocity is v(0) = 96 ft/sec.
(b) The maximum height occurs when v(¢) = 0, when ¢ = 3.

The maximum height is s(3) = 256 ft and it occurs at
t=3sec.



Section 4.4 187

14. Continued 15-2x

18. (a) The base measures 10 — 2x in. by in, so the

(c) Note that s(r) = —16¢2 +961+112 = —16(t+1)(—"7), .
volume formula is

sos=0att= .—1 ort=17. Chloosmg the positive value, x(10—2x)15—2x) , ,
of ¢, the velocity when s =0 is v(7) = —128 ft/sec. V(x)= > =2x>=25x"+75x.
15. We assu;ne that a and b are helld constant. Then (b) We require x> 0, 2x < 10, and 2x < 15. Combining
AO) = Eab sin @ and A’(6) = 5 ab cos 6. The critical point these requirements, the domain is the interval (0, 5).
(for 0 <6 < 7) occurs at 0 = g Since A’(6) >0
T , T
f0r0<0<5 and A (9)0f0r5<9<ﬂ',
the critical point corresponds to the maximum area. The [0, 5] by [20, 80]
angle that maximizes the triangle’s area is 6 = %(or 90°). (c)
16. Let the can have radius r cm and height 2 cm. Then
rlh = 1000, s0 h = 1000. The area of material used is T
r #=1.9618739 Y=66.019118

2 A 0, 5] by [—20, 80
A= +amm=1r+ 2% o M _onr 200007 (0,51 by [720, 801 _
r dr The maximum volume is approximately 66.02
27”3 —2000 when x = 1.96 in.
= 3 . The critical point occurs at
r (@) V'(x)=6x"-50x+75
e 3/1000 —107" cm. Since dA <0 The critical point occurs when V’(x) =0, at
T dr = 50 £+/(=50)% —4(6X75) _50++4/700 25457
for0<r <107~ and “ >0 forr > 107", the critical 2(6) 12 6
dr thatis, x = 1.96 or x = 6.37. We discard the larger value

point corresponds to the least amount of material used and

b it is not in the domain. Since V" (x) = 12x — 50,
hence the lightest possible can. The dimensions are ecause it is not in the domain. Since V() "

which is negative when x = 1.96, the critical point

-1/3 -1/3

r=107""" =6.83cmand 4 =107""" =~ 6.83cm. In Example corresponds to the maximum volume. The maximum
2, because of the top of the can, the “best” design is less big 25_ Sﬁ
around and taller. volume occurs when x = T =~1.96, which

1000 fi th Iti .

17. Note that 7r*h = 1000, s0 h = > Then confirms the result in (c)

nr 19. (a) The “sides” of the suitcase will measure 24 — 2x in. by

A8 4 2mrh =82 + 2000 5o 18 — 2x 1n and will be 2x in. apart, so the volume
r formula is
16(+> —125) V(x)=2x(24—2x)18 - 2x) = 8x” — 168x* +864x.

A _ 16— 200062 = 5~ The critical point
dr r (b) We require x >0,2x <18, and 2x <24. Combining
these requirements, the domain is the interval (0, 9).

occurs at r=3125=>5cm. Since Z—A<0 forO<r<5and
r

dA . .
— >0 for r>5, the critical point corresponds to the least

B
amount of aluminium used or wasted and hence the most

4
economical can. The dimensions are ¥ =5 cm and h= —0
T [0, 9] by [-400, 1600]

. . 8
so the ratio of A to ris — to 1.
T
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19. Continued
(©

Haximum

#=3.39444B7 ¥=1308.9547
[0, 9] by [—400, 1600]
The maximum volume is approximately 1309.95
when x = 3.39 in.

(d) V'(x) = 24x> —336x + 864 = 24(x* — 14x + 36)

The critical point is at

4+\/( 14)? — 4(1)(36) 14+\/— 7+, that

2(1)

is, x=3.39or x =10.61. We discard the larger value
because it is not in the domain. Since V”(x) =

24(2x —14), which is negative when x = 3.39, the critical
point corresponds to the maximum volume. The

maximum value occurs at x =7 — \/E =3.39, which
confirms the results in (c).

(e) 8x3—168x2 +864x=1120
8(x3-21x2+108x—-140)=0
8(x—=2)(x-=5)(x—-14)=0
Since 14 is not in the domain, the possible values of
xare x=2in. orx=351in.

(f) The dimensions of the resulting box are 2x in.,
(24 — 2x) in., and (18 — 2x) in. Each of these
measurements must be positive, so that gives the
domain of (0, 9)

20.
6 mi

6-x 1 Village

-~
[P
2mi :/V4+x2mles

Jane
Let x be the distance from the point on the shoreline nearest
Jane’s boat to the point where she lands her boat. Then she

needs to row v4+x* mi at 2 mph and walk 6 — x mi at
5 mph. The total amount of time to reach the village is

=Y 67X i ©<x<6). Then
X 1
F=1— e o)- -+
22\/4+x Wa+x? 3

Solving f’(x)=0, we have:

oox 1
Watx? O
5x =24+ x*
25x% = 4(4+x%)
21x% =16
X = +—

=

21.

22.

23.

24,

We discard the negative value of x because it is not in the
domain. Checking the endpoints and critical point, we have

F0)=22, f(\/%) ~2.12,and £(6) ~3.16. Jane should

land her boat % ~ (.87 miles down the shoreline from
21

the point nearest her boat.

If the upper right vertex of the rectangle is located at
(x, 4 cos 0.5x) for 0 < x <, then the rectangle has width

2x and height 4 cos 0.5x, so the area is A(x) = 8x cos 0.5x.
Then A’(x) = 8 x(—0.5 sin 0.5x) + 8(cos 0.5x)(1)

=—4xsin 0.5x + 8 cos 0.5x.
Solving A’(x) graphically for 0 < x < 7, we find that

x = 1.72. Evaluating 2x and 4 cos 0.5x for x = 1.72, the
dimensions of the rectangle are approximately 3.44 (width)

by 2.61 (height), and the maximum area is approximately
8.98.

Let the radius of the cylinder be » cm, 0 < r < 10. Then the
height is 24/100— r* and the volume is

V(r)=27r*\100—r>cm?. Then
1
V/(r)=2mr?| ———— [(=2r) + (272V100 = %) (2r)
[ 241002 J

=27 +4mr(100—r?)

V10072

_ 27r(200 - 3r?)

V10072

The critical point for 0 < r < 10 occurs at

=, 200 —10\/7 Since V’(r) >0 for 0<r<10\/§ and

V’(r) >0 for 10\/; <r <10, the critical point corresponds

to the maximum volume. The dimensions are

r= 10\/§z8.16 cm and h=§z11.55 cm, and the

V3

40007 _ 241840 em®,

33

Set r’(x)=c"(x): 4x7V2
value is x = 1, so profit is maximized at a production level

of 1000 units. Note that (r —c)"(x) = —2(x) > —4 <0 for

all positive x, so the Second Derivative Test confirms the
Maximum.

volume is

= 4x. The only positive critical

Set r/(x)=c’(x):2x/ (x> +1)* = (x = 1).
equation grpahically to find that x = (0.294. The graph of

We solve this

y=r(x) — c(x) shows a minimum at x =0.294 and a
maximum at x = 1.525, so profit is maximized at a

production level of about 1,525 units.



25.

26.

27.

28.

Set ¢’(x)= X 342 905430 = x* —10x+30. The only
X

positive solution is x = 5, so average cost is minimized at a
production level of 5000 units. Note that

4 (e
dax?\ x

Derivative Test Confirms the minimum.

) =2>0 for all positive x, so the Second

Set ¢’(x)=c(x)/x:xe* +e* —4x =¢e" —2x. The only
positive solution is x = In 2, so average cost is minimized at
a production level of 1000 In 2, which is about 693 units.

42
Note that z(c(x)) =e" >0 for all positive x, so the
dx X

Second Derivative Test confirms the minimum.

Revenue: r(x) =[200—2(x —50) Jx = —2x> +300x
Cost: ¢ (x) =6000+32x
Profit: p(x) =r(x)—c(x)

=-2x" +268x —6000,50 < x <80
Since p’(x) = —4x+ 268 = —4(x —67), the critical point
occurs at x = 67. This value represents the maximum
because p” (x) =—4, which is negative for all x in the
domain. The maximum profit occurs if 67 people go on the
tour.

@ f'()=x(-e)+e (=" (1-x)
The critical point occurs at x = 1. Since f”(x) > 0 for
0<x<1andf’(x) <0 for x> 1, the critical point
corresponds to the maximum value of f. The absolute
maximum of foccurs at x = 1.

(b) To find the values of b, use grapher techniques to
solve xe™* =0.1e™%!, xe™* = 0.2¢792, and so on. To
find the values of A, calculate (b — a) ae?, using the
unrounded values of b. (Use the list features of the
grapher in order to keep track of the unrounded values
for part (d).)

a b A
0.1 | 371 | 0.33
02 | 2.86 | 0.44
03 | 2.36 | 046
04 | 2.02 | 043
0.5 | 1.76 | 0.38
0.6 | 1.55 | 0.31
0.7 | 1.38 | 0.23
08 | 1.23 | 0.15
09 | 1.11 | 0.08
1.0 | 1.00 | 0.00
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(c)

[0, 1.1] by [-0.2, 0.6]
(d) Quadratic:
A=-091a> +0.54a+0.34

fu)u‘\&\

[-0.5, 1.5] by [-0.2, 0.6]

Cubic:
A=174a° —3.78a% +1.86a+0.19

f‘\ /

[-0.5, 1.5] by [-0.2, 0.6]

Quartic:
A=~-1.924" +5.964° - 6.87a> +2.71a+0.12

N

! A

[-0.5, 1.5] by [-0.2, 0.6]

(e) Quadratic:

AN

¥
Haximum
#=.2BEP4EA2  Y=.41EEEG42

[-0.5, 1.5] by [—0.2, 0.6]

According to the quadratic regression equation, the
maximum area occurs at a = 0.30 and is approximately
0.42.

Cubic:

[N/

Haximum
H=.ZANSHOBY Y=.ME24B43ZY
[-0.5, 1.5] by [—0.2, 0.6]

According to the cubic regression equation, the
maxiumu area occurs at @ = 0.31 and is approximately
0.45.
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28.

29.

30.

31.

32.

Continued
Quartic:

~

Huximrum
#=.289741234  Y¥=4EUBESEZ
[-0.5, 1.5] by [—0.2, 0.6]

According to the quartic regression equation the
maximum area occurs at a = 0.30 and is approximately
0.46.

(a) f’(x) is a quadratic polynominal, and as such it can
have 0, 1, or 2 zeros. If it has O or 1 zeros, then its sign
never changes, so f(x) has no local extrema.

If f’(x) has 2 zeros, then its sign changes twice, and
f(x) has 2 local extrema at those points.
(b) Possible answers:
No local extrema: y = x3;
2 local extrema: y = x°=3x

Let x be the length in inches of each edge of the square end,
and let y be the length of the box. Then we require
4x+y<108. Since our goal is to maximize volume, we
assume 4x + y = 108 and so y = 108 — 4x. The volume is
V(x)=x2(108—4x)=108x2 —4x>, where 0 <x < 27.
Then V' =216x —12x? = —12x(x — 18), so the critical
point occurs at x = 18 in. Since V’(x)>0 for0<x <18

and V’(x) <0 for 18 < x <27, the critical point corresponds
to the maximum volume. The dimensions of the box with
the largest possible volume are 18 in. by 18 in. by 36 in.

Since 2x + 2y =36, we know that y = 18 —x. In part (a),
the radius is ZL and the height is 18 — x, and so the
y/4

volume is given by
X ’ 1

arth=n| — | (18—x)=—x*(18—x).
2r 4

In part (b), the radius is and the height is 18 — x, and so the
volume is given by 7r’h=7x*(18—x). Thus, each
problem requires us to find the value of x that maximizes
f(x)=x2(18—=x) in the interval 0 < x < 18, so the two
problems have the same answer.

To solve either problem, note that f(x) =182 — x3 and so
f/(x)=36x—3x% =-3x(x—12). The critical point occursat
x=12.Since f’(x)>0 forO<x<12and f'(x)<0

for 12 < x <18, the critical point corresponds to the
maximum value of f (x). To maximize the volume in either
part (a) or (b), letx=12 cm and y =6 cm.

Note that h> +r% =3 and so r =+3—h%. Then the volume

is given by V = %rzh - %(3—}12)}1 = nh—%fﬁ for

0<h<+/3,and so Z—Z:n’—ﬂhz = (1-h?). The critical

M. f(x)=2x—ax > = 2 —a

point (for & > 0) occurs at h = 1. Since Z—Z> 0 forO<h<1

and % <0 for 1<h< \/g , the critical point corresponds

to the maximum volume. The cone of greatest volume has

2
radius \/5 m, height 1 m, and volume ?ﬂm3 .

33. (a) We require f(x) to have a critical point at x = 2. Since

f/(x)=2x—ax?, wehave f'(2)=4 —% and so our

requirement is that 4 — % =0. Therefore, a =16. To

verify that the critical point corresponds to a local
minimum, note that we now have f’(x)=2x-— 16x72
andso f”(x)=2+ 32x73, s0 f”(2)=6, which is
positive as expected. So, use a =—16.

(b) We require f”(1)=0. Since f”=2+2ax", we have
f”(1)=2+2a, so our requirement is that 2 +2a = 0.
Therefore, a = —1. To verify that x =1 is in fact an
inflection point, note that we now have
f7”(x)=2-2x", which is negative for 0 < x < 1 and
positive for x > 1. Therefore, the graph of fis concave
down in the interval (0, 1) and concave up in the
interval (1,e0), So,usea=-1.

a . .
5> S0 the only sign change in
X

1/3
f’(x) occurs at x = (;) , where the sign changes from

negative to positive. This means there is a local minimum at
that point, and there are local maxima.

35. (a) Note that f”(x) = 3x> +2ax+b. We require f’(-1)=0

and f’(3)=0, which give3-2a + b =0and

27 + 6a + b = 0. Substracting the first equation from the
second, we have 24 + 8a = 0 and so a = —3. Substituting
into the first equation, we have 9 + b= 0, so b =-9.
Therefore, our equation for f(x) isf(x)=

x3—3x2 —9x. To verify that we have a local maximum
at x =—1 and a local minimum at x = 3, note that
f/(x)=3x2-6x-9 =3(x+1)x—3), which is positive
for x < —1, negative for —1 < x < 3, and positive for x >
3.So,use a=-3 and b =-9.

(b) Note that f’(x)=3x?+2ax+b and f”(x)=6x+2a.
We require f’(4)=0 and f”(1)=0, which give
48 + 8a+ b =0and 6+ 2a = 0. By the second
equation, a = -3, and so the first equation becomes
48 — 24 +b = 0. Thus b = -24. To verify that we have a
local minimum at x = 4, and an inflection point ar x =1,
note that we now have f”(x)=6x—-6. Since f”
changes sign at x = 1 and is positive at x = 4, the desired
conditions are satisfied. So, use a =—3 and b = —24.



36. Refer to the illustration in the problem statement. Since

X+ y2 =9, we have x=+/9- yz. Then the volume of the

cone is given by
V=-—nr‘h=-r +3
R =3 (y+3)
1
=370+
=2y =3y +oye2m,
for 3<y<3.

Thus av = E(—3y2 —-6y+9)= —71'(y2 +2y-3)
dy 3
=-m(y+3)(y—1), so the critical point in the

av
interval (=3, 3) is y = 1. Since ' >0 for -3<y<1 and
y

av
e <0 for 1 <y < 3, the critical point does correspond to
Yy

2
the maximum value, which is V(1) = 3T” cubic units.

37. (a) Note that w? +d> =122, sod =+144—w?. Then we

may write S = kwd> = kw(144 —w?) = 144kw — kw’®
ds

for0<w<12, so —== 144k — 3kw? = =3k(w* - 48).
w

The critical point (for 0 <w < 12) occurs at

w:mzélx/g. Since 3—S>0 for 0<w<4\/§ and
w

;l—S <0 for 4\/5 <w <12, the critical point
w

corresponds to the maximum strength. The dimensions
are 4\/5 in. wide by 4\/6 in. deep.

(b)

[0, 12] by [—100, 800]

The graph of § =144w—w? is shown. The maximum
strength shown in the graph occurs at w = 4\/3 =6.9,

which agrees with the answer to part (a).

(c)

[0, 12] by [—100, 800]
The graph of S =d*~/144—d? is shown. The
maximum strength shown in the graph occurs at

d= 4\/8 = 9.8, which agrees with the answer to part

(a), and its value is the same as the maximum value
found in part (b), as expected.
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Changing the value of k changes the maximum strength,
but not the dimensions of the strongest beam. The
graphs for different values of k look the same except
that the vertical scale is different.

38. (a) Note that w? +d” =12%, s0d =144 — w”. Then we

may write S = de’; — kW(l44— W2)3/2, S0
das

=kwe g(144— wH2 (22w + k(144 — w2 (1)
dw 2

= (kN 144 —w? ) (-3w? + 144 —w?)
= (—4kN144 - 22 ) (w? = 36)

The critical point (for 0 < w < 12) occurs at w = 6. Since

§>0 for O<w<6and£<0for6<w<12, the
dw dw

critical point corresponds to the maximum stiffness.

The dimensions are 6 in. wide by 6\/5 in. deep.

(b)

[0, 12] by [-2000, 8000]

The graph of S =w(144—w?)*? is shown. The
maximum stiffness shown in the graph occurs at w = 6,
which agrees with the answer to part (a).

(c)

[0, 12] by [-2000, 8000]

The graph of S=d>\144—d* is shown. The
maximum stiffness shown in the graph occurs at

d= 6\/5 =~10.4 agrees with the answer to part (a), and
its value is the same as the maximum value found in
part (b), as expected.

Changing the value of k changes the maximum
stiffness, but not the dimensions of the stiffest beam.
The graphs for different values of k look the same
except that the vertical scale is different.

39. (@) v(t)=s"(t)=—-10msin 7t

The speed at time 7 is 107r‘sin m\. The maximum speed

,tzé,tzé, and
2 2

is 10rcm/sec and it occurs at ¢ =

0| =

7 . . .
t= Esec. The position at these times is s =0 cm

(rest position), and the acceleration a(t)=v'(f) =

—107% cosmt is 0 cm/sec? at these times.



192 Section 4.4

39.

40.

41.

42.

Continued

(b) Since a(t)=-1072cosnt, the greatest magnitude of
the acceleration occurs at t=0, t=1,t=2, t =3,
and t = 4. At these times, the position of the cart is
either s =—10cmors =10cm, and the speed of the cart
is 0 cm/sec.

Since % =—2sint+2cost, the largest magnitude of the
t

current occurs when —2 sin r+ 2 cos ¢t = 0, or sin ¢ = cos t.

Squaring both sides gives sin” t = cos” ¢, and we know that
-2 2, _ 2o 1 .
sin“t+cos“t=1, so sin“t=cos" t= 5 Thus the possible

n 3n 5S¢
values of rare —, —, —
4 4 4

extraneous solutions, the solutions of sint =cost are

, and so on. Eliminating

T . .
t= Z+ kr for integers k, and at these times

‘i‘ = ‘ZCOSI + 2sin t‘ = 2\/5. The peak current is 2\/5 amps.

The square of the distance is
3Y 9
D(x) =(x—2) +(x+0)? =2 x4,

soD’(x)=2x—2 and the critical point occurs at x = 1.
Since D’(x) <0 for x <land D’(x)> 0 for x > 1, the critical

point corresponds to the minimum distance. The minimum
. . 5
distance is 4/ D(1) = g

Calculus method:

The square of the distance from the point (1, \/g) to

(x,N16—x?) is given by
D(x)=(x—1> +(\16-x* —3)

=x2—2x+1+16— x> —2y48-3x% +3
=-2x+20-2v48—3x%. Then

2
24/48 —3x2

Solving D’(x)=0, we have:

6x = 2v/48 - 3x2

36x2 = 4(48—3x?%)

6x

Jag—3x2

D'(x)=—-2— (~6x)=—2+

9x? = 48—3x?
12x% =48
x=%2

We discard x = -2 as an extraneous solution, leaving x = 2.
Since D’(x)<0for —4 <x <2 and D’(x) >0 for 2<x <4,

the critical point corresponds to the minimum distance. The
minimum distance is | D(2) = 2.

Geometry method:
The semicircle is centered at the origin and has radius 4.

The distance from the origin to (1,\/3) is /1% + (\/5)2 =2.
The shortest distance from the point to the semicircle is the

distance along the radius containing the point (1,\/5). That
distance is 4 — 2 =2.

43. No. Since f(x) is a quadratic function and the coefficient

of x% is positive, it has an absolute minimum at the point

where f’(x)=2x-1=0, and the point is (;, i)

44. (a) Because f(x) is periodic with period 2.

(b) No. Since f(x) is continuous on [0, 27], its absolute
minimum occurs at a critical point or endpoint.
Find the critical points in [0, 27]:
f/(x)=—4sinx—2sin2x= 0

—4sinx—4sinxcosx = 0
—4(sinx)(1+ cosx) 0
sinx = Qorcosx=-1
x =0,m,2m

The critical points (and endpoints) are (0, 8), (r,0),
and (27, 8). Thus, f(x) has an absolute minimum at

(r,0) and it is never negative.

45. (a) 2sint = sin2t

2sint 2sint cost
2(sint)(1—cost) = 0
sint = Qorcost=1

t = krxr, where k is an integer
The masses pass each other whenever ¢ is an integer
multiple of 7 seconds.
(b) The vertical distance between the objects is the absolute
value of f(x)=sin2¢—2sint.
Find the critical points in [0, 27]:
f'(x)=2cos2t—2cost = 0

2(2cos2t—1)—2cost =0
2(2coszt—cost—1) =0
2(2cost+1)cost—1) = 0
1

cost =——orcost=1
2

=2l,4l,0,27r

33

The critical points (and endpoints) are (0, 0),
[2”, —3\/5], (4”, 3\2/5} and (27,0)

3 2 3

. . 2
The distance is greatest when ¢ = Y sec and when

4 . . . 3J3
t= ? sec. The distance at those times is 7 meters.
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46.(a) sinf=sin (t + % ) so the graph of y= ‘ f (t)‘ has corners at these points
and di‘ f (t)‘ is undefined at these instants. We cannot
t

. . T . T
sint = sinfcos—+ costsin— . . .
3 3 say that the distance is changing the fastest at any

. 1. 3 particular instant, but we can say that near
sint = Esmt+7005t

T 4 . . .
3 t=— ort=— the distance is changing faster than at
—sint = ——cost

2 2 any other time in the interval.
tant =3 . . .
47. The trapezoid has height (cos0)ft and the trapezoid bases

. . T

Solving for 7, the particles meet at ¢ = 3 e and at measure 1 ft and (1+2sin6)ft, so the volume is given by

1

4 _ - .

= 4 sec. V()= 2(cosO)(1+l+2s1n9)(20)

3

(b) The distance between the particles is the absolute value

=20(cos0)(1+sin6).

T
Find the critical points for 0 <0< —:
off(t):sin(t+ﬂ)—sint:\/gcost—lsint. Find the P 2
3 2 2 V’(8) = 20(cos ) (cos 8) + 20(1 + sin 6) (—sin6) = 0
20cos? 0—20sin6—20sin’> 0 =0
20(1-sin® 8)—20sin6—20sin> 6 =0

critical points in [0, 27]:

f'(@t= —ﬁsint—%cost =0

2 i —20(2sin>0+sinf—1=0
—isintzlcost —20(2sin@—1)(sin6+1)=0
2 2 .
tant——i sin9=5 orsinf = —1
J3 o T
6

The solutions are ¢ = S—E and = H—ﬂ so the critical T
6 6 The critical point is at (6’ 15\/5 ) Since

points are at (56”’ - 1) and (léﬂ, 1), and the interval - x x
V’'(6)>0 for0S0<g and V’(0) <0 for g<9<5, the

endpoints are at (O, \f} and [277:, \/25] The particles critical point corresponds to the maximum possible trough

. - /4
volume. The volume is maximized when 6 = —.
St 117z 6
are farthest apart at ¢ = 5 sec and at ¢ = ?sec, and

48.(a) D ¢
the maximum distance between the particles is 1 m. R 8.5 s
(c) We need to maximize f’(¢), so we solve f”(t)=0. y
f”(t)——ﬁcosz%lsint—o 0
2 2
3
—sinf =——cost x
2 2
This is the same equation we solved in part (a), so the A P B
solutions are = zsec and t = 4lse(;. Sketch segment RS as shown, and let y be the length of segment

OR. Note that PB = 8.5 — x, and so

OB =+/x> = (8.5-x)* =/8.5(2x—8.5).

For the function y = f’(¢), the critical points occur at

T 4r . .
3 —1]and ER 1], and the interval endpoints are Also note that triangles QRS and PQB are similar.
OR _ PO
at | 0,— l and | 27, — 1 . RS 0B
2 2 y X

85 J85(2x-8.
_ 8.52x—8.5)

4
f’(z)\ is maximized at 1= % and 7 = ?71' But

these are the instants when the particles pass each other,
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48. Continued
2 2

X
@ )ﬁ 8.5(2x—8.5)
» 8.5x7
T 2x-85
2=x2+y?
2oy 8.5x2
2x-8.5
e x2(2x-8.5)+8.5x>
2x-8.5
2 253
C2x-85
2
(b) Note that x >4.25, and let f(x)= I’ = T2 . Since
y <11, the approximate domain of fis 5.20 <x <8.5.
Then
P = (2x—8.5X6x3) = (2x°X2) _ x2(8x=51)
(2x-8.5) (2x-8.5)
For x>5.20, the critical point occurs at
51

X= Y =6.3751n., and this corresponds to a minimum

value of f(x) because f’(x) <0 for5.20 < x <6.375
and f’(x) >0 forx > 6.375. Therefore, the value of x
that minimizes ° is x = 6.375 in.

(¢) The minimum value of L is

3
203754y 04 in,
2(6.375)-8.5

49. Since R=M"> E—M gMz—lM3 we have
2 3 2 3

R
Z—M:CM—MZ. Let f(M)=CM — M?. Then

f/(M)=C-2M, and the critical point for f occurs at

C . .
M= > This value corresponds to a maximum because

f'(M)>0 forM<% and f'(M) <0 forM>%. The value

of M that maximizes d—R isM = g
am 2

50. The profit is given by
P(x)=(nXx—c) = a+b(100-x)x—c)
= bx? +(100+ ¢)bx + (a—100bc).
Then P’(x)=-2bx+(100+c)b
=b(100+c—2x).

. . 100+c¢
The critical point occurs at x =

= 50+%, and this

value corresponds to the maximum profit because

P’(x)>0 forx < 50+% and P’(x) < 0 forx > 50+%.

A selling price of 50 +% will bring the maximum profit.

51. True. This is guaranteed by the Extreme Value Theorem
(Section 4.1).

52. False. For example, consider f(x)= x> ate=0.

53.D. f(x)=x*(60—x)
F/(x)=x*(=1)+ (60— x)(2x)
=—x%+120x - 2x?
=-3x> +120x
=-3x(x—40)
x=0 or x=40
60— x =60 60— x =20
x2(60-x)=0
(40)%(20) = (1600) (20)
=32,000

54. B. Since f’(x) is negative, f(x) is always decreasing, so

f(25)=3.
1
55.B. A=—bh
2

b +h* =100
b=+100- K>

A:g\/IOO—hZ
NI00-R* W’

2 23100 - A2
A’=0 when h= \/_

b_\/IOO =50

J—J—zs

de 2

56. E. length = 2x

A=

height = 30— x? —4x? =30—-5x"
2x(30 - 5x%) = 60x —10x°
Z2(60x—10x) = 60— 30x
dx
x=+2
2
223027 —4(2)%) = 4042.

57. Normal

A
1
ai
l
P

T C :
Let P be the foot of the perpendicular from A to the mirror,
and Q be the foot of the perpendicular from B to the mirror.



57. Continued
Suppose the light strikes the mirror at point R on the way
from A to B. Let:
a = distance from A to P
b = distance from B to Q
¢ = distance from P to Q
x = distance from P to R
To minimize the time is to minimize the total distance the
light travels going from A to B. The total distance is

D(x)= \/x2 +a* +\/(c—x)2 +b?
Then

D’(x)= 2x)+ [-2(c—x)]

1 1
W +a® 2J(c—x)? +b*
cC—X

X
\/x2 +a’ \/(c—x)2 +b?
Solving D’(x)=0 gives the equation

X _ c—x
\/x2 +a’ \/(c—)c)2 +b?

Equation 1. Squaring both sides, we have:

%2 _ (c—x)2

which we will refer to as

ra’ (c—x)*+b*
%2 I:(c—x)2 +b2]= (c—x)z(x2 +a2)
%2 (c— x)2 +x%b% = (c— x)z)c2 +(c— x)2a2
x2b% = (c—x)za2
b = [c2 —2xc+x? ]az
0 =(a2 - bz)x2 —2a%cx+a’c?
0=[(a+b)x—ac]l(a—b)x—ac]

orx =
a+b a—

is an extraneous solution

Note that the value x =
a—

because x and ¢ — x have opposite signs for this value. The
ac
a+b’

only critical point occurs at x =

To verify that critical point represents the minimum
distance, note that

W% +a>) (1) - (x)["J
Vit +a®

pro= x* +a’ B

—(c—x)

Je—x)?+b?
(c— x)2 +b?

_ (P +adh)-x c—x)’+b7 1+ (c-x)’
x° +a2)3/2 [(c—x)? +172]3/2
~ o N »?
x° +a2)3/2 [(c—x)? +b2]3/2’
which is always positive.
‘We now know that D(x) is minimized when Equation 1 is

W(e=x)* +b*) (=)= (c—x)
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OR

PR
true, or, equivalently, — = ﬁ This means that the two

right triangles APR and BOR are similar, which in turn
implies that the two angles must be equal.

8. Y ja— 2k
dx
.. . ka a .
The critical point occurs at x = % = > which represents a

2

. d”v L .
maximum value because — = —2k, which is negative for
dx

all x. The maximum value of v is

2 2
kax— ke = ka| & |-k 4] =K
2 2 4

59.(a) v= cror2 —cr®

% =2cryr — 3er? = cr(2ry —3r)

2,
The critical point occurs atr = TO. (Note that» =0 is

not in the domain of v.) The critical point represents a
. d*v .
maximum because = 2cry —6¢r = 2¢ (1, — 3r), which
dr

. . LT
is negative in the domain EO <r<y,.

(b) We graphv=(0.5—- r)rz, and observe that the

maximum indeed occurs atv = (i)O.S = 1

N

[0, 0.5] by [—0.01, 0.03]

60. (a) Since A” (¢) = —kmg ™ + g, the critical point occurs

km 2km
when —- = —, or ¢ = ——. This corresponds to the
¢ 2 h
minimum value of A(g) because A” (¢) = 2kmg >, which
is positive for g > 0.
(b) The new formula for average weekly cost is
k+b h
_k+bgm  ha

h
=@+bm+cm+7q

q
= A(q)+bm
Since B(q) differs from A(g) by a constant, the
minimum value of B(g) will occur at the same g-value
as the minimum value of A(g) . The most economical

2km

quantity is again
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61. The profit is given by
px)=r(x)—c(x)
=6x—(x* —6x% +15x)
=—x>+6x2 -9x, forx 2 0.

Then p’(x) = —3x% +12x -9 = -3(x — 1) (x — 3), so the critical
points occur at x =1 and x = 3. Since p’(x) <0 for
0<x<1,p’(x)>0 for 1< x <3,and p’(x) <0 for x > 3, the
relative maxima occur at the endpoint x =0 and at the
critical point x = 3. Since p(0) = p(3) =0, this means that
for x > 0, the function p(x) has its absolute

maximum value at the points (0, 0) and (3, 0). This result
can also be obtained graphically, as shown.

Haximum
H=z

¥=0
[0, 5] by [-8,2]

62. The average cost is given by
a(x)= =)
x

a’(x) =2x—20 and the critical value is x = 10, which

=x>—20x+ 20,000. Therefore,

represents the minimum because a” (x) = 2, which is
positive for all x.The average cost is minimized at a
production level of 10 items.

63. (a) According to the graph, y’(0) = 0.
(b) According to the graph, y’(-L) = 0.
(¢) y(0)=0, so d=0.
Now y’(x) = 3ax* + 2bx + ¢, so y’ (0) implies that
¢ =0. Therefore, y(x) = ax® + bx? and
y(x)= 3ax? +2bx. Then y(-L)= —al®+bI?* = H and
y'(-L)= 3al’* —2bL = 0, so we have two linear

equations in the two unknowns a and b. The second

. . 3alL N )
equation gives b = %. Substituting into the first

3al?

equation, we have —al’+== =H ,or

3
ﬂ =H,soa= 2£. Therefore, b = 3£ and the
2 L r’

equation for y

isy(x)= 2£2x3 +3£2x2, or
r L

o=l () |

—-X
and so the

2
64. (a) The base radius of the cone is r = ra

height is h = Va* -r* =

/4 r(2ma—x : 2ma—x ’
V(x)==r*th== a*- .
3 3 2r 2

(b) To simplify the calculations, we shall consider the
volume as a function of r:

T
volume = f(r) = —r2\/a2 —r?, where 0 < r < a.

3

fm:gdi(rwaz )

|2, [ 2
=—|r o (22r)+( a’—r )(2r)
3: 2\/a —r? :|
_ - +2r(a —rz):l

& —r?

2mwa—x ’
- ( ] . Therefore,
2

x| eair- 3r2):|

2 2
3 a —r

_mr(2a’ -2r%)

3Wa?-r?
2

. . 2a .
The critical point occurs when rt= =5 which

givesr = a\/; i . Then

2 2
h=va?-r* = 2_2a” @ ﬁUsing
3 3 3
=4 6 andhzﬁ,
3 3
we may now find the values of r and 4 for the given
values of a
whena=4:r i h—i
3 3
whena:S:rz#,hz%;

whena=6:r=2\/— h=2\/§;
86 83

OND h_i
3 3

6 a3 5

(¢) Since r = —— and h = ——, the relationship i 1s —
3 3 h

whena=8:r=

65. (a) Let x, represent the fixed value of x at point P, so that P
has coordinates (x,, @) and let m =f”(x,) be the
slope of line RT. Then the equation of line RT is
y=m(x—xg)+a. The y-intercept of this line
ism(0—x,)+a=a—mx,, and the x-intercept is the

. mx,—a
solution of m(x —x,)+a=0,o0rx = .Let O
m

designate the origin. Then (Area of triangle RST)



65. Continued
(a) =2 (Area of triangle ORT)

=2 % (x-intercept of line RT) (y-intercept of line RT)
2ot M0 )
=2e¢—| —— |(a—mx
2 m 0
—m mxy—a \( mx,—a
m m
2
_ [mxy—a
2
=—m| x, - %
()

Substituting x for x; ,f(x) for m, and f (x) for a, we

f@ ]2_

VAEY;
(b) The domain is the open interval (0, 10).

{ )
To graph, lety, = f(x)=5+5 1_R

= f’(x)=NDER (y,), and

have A(x) = —f’(x)|:x—

The graph of the area function y; = A(x) is shown

below.

[0, 10] by [-100, 1000]

The vertical asymptotes at x = 0 and x = 10 correspond
to horizontal or vertical tangent lines, which do not
form triangles.

(c¢) Using our expression for the y-intercept of the tangent
line, the height of the triangle is

a—mx= f(x)= f'(x)sx

N T T S
2 24100 - x
=5+%\/100—x2 +

2
X
24100 - x

We may use graphing methods or the analytic method in
part (d) to find that the minimum value of A(x) occurs at
x = 8.66. Substituting this value into the expression
above, the height of the triangle is 15. This is 3 times
the y-coordinate of the center of the ellipse.

(d) Part (a) remains unchanged. The domain is (0, C). To
graph, note that

2
f(x)=B+B /1—%=B+g\/C2—x2 and
C
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=(-2x)=

—Bx
f (X)—* .
¢ 2\/c2 —x? cVC? -2

Therefore, we have

r 2
, f(x)]
Alx)=— -
(x)y=-f (X)_x 00
r 2
B [
~ B _B+— C —x
- C\/C2 2 o —Bx
CNC? = x?
r 2
_ Br | (BC+BNC -2’ NCP -
ooy ~Bx

. 2
S S Bx2+(BC+B\/C2—x2)(\/C2—x2)]
BCX\/CZ—XZ -

r 2
! Bx*+ BC C2—x2+B(C2—x2]

) BCxNC? -3t

r 2

I S BC(C+\/C2—x2)]
BCx\/C2—x2 -

_ BC(C+NC*—x?)?

N C? = x?
(NC2 = x> )2XC +C? - x* [_sz_

Cc?—x
(C+NC?—x ){ F +VC? —x (1>J
¥2(C? - x%)

2x2 —(C+C* = x?
e | P )
(€ =) { L C2—x2]

| lcz_xz
B > 2 sz
_ BC(CH+NC?—x?)| 25"+ ————=

A’'(x)=BC

2 2
2Jer_ 2 C -x
| —CNC? —x* +x> = (C? = x%)
BC(CH+NC?-xH)[ Cx? R
= —-CcVC*-x2 -C
x(C7=x%) cr-x?

[~2 2\r
=M sz—C(C2—x2)—C2‘,C2—x2:|
x2 2 [~2 2
x (C2 )3/2 —C"=CNC"—x7)

To find the critical points for 0 <x < C, we solve:
x*—C?=CNC? - x*
4xt —4C? P +Ct =t =7
4x*-3C*x* =0
x*(4x* -3C*) =0
The minimum value of A(x) for O < x < C occurs at the

3, 3c?

critical point x = - orx” = R The corresponding

X (Cz x )32
_BC 2(C+NCE =22 )

triangle height is
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65. Continued
a—mx=f(x)—f'(x)sx

2
=B+E C*—x*+ Bx
Cc

CcVC? =2

2
_p.+B /C2_£+7
c 4 , 3C?

cic
4

3BC?

_p+B[C), 4

cl2 C?

2
_p+B,38
2 2

=3B

This shows that the triangle has minimum area when its
height is 3B.

Section 4.5 Linerization and Newton’s
Method (pp. 233-245)

Exploration 1 Appreciating Local Linearity

1. ‘R\\\//-——‘

y = (x2+0.0001)Y4 + 0.9

The function appears to come to a point.

1 . f(0)-fa)
2 S @= T e
m (x%+0.000D)"* +0.9 - (0+0.0001)"* +0.9)
x—a X'—'O
i (x*+0.000D)"* - 0.1 o
x—a X
fix) is differentiable at x = 0, and the equation of the tangent
lineisy=1.

3. The graph of the function at that point seems to become the
graph of a straight line with repeated zooming.

4. The graph will eventually look like the tangent line.

Exploration 2 Using Newton's Method on
Your Calculator

See text page 237.

Quick Review 4.5

LY cos (x2+1) » i(x2+1):2xcos x2+1)
dx dx
2 dy (x+1)(A—=sinx)— (x+cosx)(1)
Cdx (x+1)
_ x—xsinx+1-sinx—x—cosx
(x+1)%
_1-cosx—(x+1) sin x
(x+1)?
3.
——
/£
2eFe
H=-5671433 ¥=0
[—2,6] by [-3, 3]

x=~—-0.567
4. /

Zerg
n=-3221B%Y I¥=0

[—4, 4] by [—10, 10]
x=-0.322

5. /()= (= )+(EeHD=e" —xe"
=1
The lines passes through (0, 1) and has slope 1. Its equation
isy=x+1.

6. f/(X)=(xX—€ )+ (e X )=e"—xe™"

f=h=e' —(=e")=2e
The lines passes through (-1, —e +1) and has slope 2e.
Its equation is y = 2e(x + 1)+ (—e+1), ory =2ex+e+1.

7.(@) x+1=0
x=-1

(b) 2ex+e+1=0
2ex =—(e+1)

v=—t 0684

2e



8. f'(x)=3x2-4
FH=31)?%-4=-1
Since f(1)=-2 and f’(1) =—1, the graph of g(x) passes
through (1, —2) and has slope —1. Its equation is
gx)=—1(x—-1)+(-2),orgx) =—x—1.

* f(x) 8(x)
0.7 —1.457 -1.7
0.8 —1.688 -1.8
0.9 -1.871 -1.9
1.0 2 -2
1.1 —2.069 2.1
1.2 -2.072 22
1.3 —2.003 -23

9. f'(x)=cosx
f'a.5)=cos 1.5
Since f(1.5) =sin 1.5 and f’(1.5) =cos1.5, the tangent line
passes through (1.5, sin 1.5) and has slope cos 1.5. Its

equation is y =(cos1.5)(x—1.5)+sin1.5, or approximately
y=0.071x+0.891

[0, ©] by [-0.2, 1.3]

10. For x >3, f’'(x)=———, and so f'(4) = % Since

24yx-3
1
f@=landf'(4)= 5, the tangent line passes through

1
(4, 1) and has slope 5 Its equation is

1 1
y=—(x-4)+1l,ory=—x—1.
2 2

/
B

[-1.7]by [-2,2]

Section 4.5 Exercises

1.(a) f/(x)=3x2-2
We have f (2) =7 and f'(2)=10.
Lx)=fQ+f'(2)(x-2)
=7+10(x—=2)
=10x-13
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(b) Since f(2.1) = 8.061 and L(2.1) = 8, the approximation
differs from the true value in absolute value by less
than 107"

2. f'(x0)= (2x)=

X
\/x2+9
We have f(—4)=5 andf’(—4)=—§.

L(x)=f(3)+ f'(-H(x—(-4)
=5—%(x+4)
4 9

=——x+=
5 5

(b) Since f(-3.9) =4.9204 and L(-3.9) =4.92, the
approximation differs from the true value by less than
107,

2\/x2 +9

3.@) fl(x)=1-x7
We have f(1)=2 and f’(1) = 0.
L(x)=fD+ f'(INx-1)
=24+0(x-1)
=2
(b) Since f(1.1) 2.009 and L(1.1)=2, the approximation
differs from the true value by less than 1072

4. 100 =

X+
We have f(0)=0 and f’(0) = 1.

L(x)= f(0)+ f"(0Xx—0)
=0+1x
=x

(b) Since f(0.1) = 0.0953 and L(0.1)=0.1 the
approximation differs from the true value by less
than 1072
5.(a) f'(x)=sec’x
We have f(r)=0andf'(7)=1.

L(x) = f(m)+ f(m)(x - 7)
=0+1(x—m)
=x-7
(b) Since f(w+0.1)=0.10033 and L(7 +0.1)=0.1, the
approximation differs from the true value in absolute

value by less than 107,
6. (@) f(x)=———
Jiox?
We have f(0)= g and £/(0) = —1.

L(x)=f(0)+ f(0)(x—-0)
=§+enu—m

T
=—x+—
2
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6. Continued

(b) Since f(0.1) =1.47063 and L(0.1) = 1.47080, the
approximation differs from the true value in absolute

value by less than 107,
7. f/(x)=k(1+ )
We have f(0)=1andf’(0)=k.

L(x)= f(0)+ f(0)(x-0)
=1+k(x-0)
=1+kx

8. (a) (1.002)'® = (1+0.002)'® =1+ (100)(0.002)
=12

‘1.002“’" - 1.2‘ ~0.021<107"!
(b) 31.009 = (1+0.009)"> = 1+%(0.009) =1.003;

31.009 —1.003| = 9% 107° <107

9. f(X)=(1-x° =1+ =1+6(-x)=1-6x

®) f(x)= % = 21+ ()] = 201+ (1) ()]
=2+ 2x

(© f)=01+x)"" z1+[—le:1_x
2 2

13
10. () f(x)=(4+3x0)" :41/3[1+i’€)

~ 413 1+1(3x) =413 1+x)
3| 4 4
5 172
(b) f(x)=V2+x> :\5(1+X2]
1 x2 x2
A
2/3 2/3
o] 1)
2+4+x 2+4x

2 1 2
=1+=| - =1-
30 2+x 6+3x

11. x =100

£7(100) = l(100)‘“2 =0.05
£(100) = 120 +0.05(101-100) =10.05
12. x=27
ran=s@n=_
3 27
F27)=3+(1/27)(26-27)

1 -
=31 2206
Y=y

13. x=1000

’ 1 —-2/3
1000) = ~(1000)™" = —
£7(1000) = =(1000) 300
y=10+(1/300)(x —1000)

y= 10-— —9.993
150

14. x =81

rapy— Lotz _ 1
f@n= 2(81) =13

1
=9+—(80-81
y 18( )

1 _
—9-— -804
YTUTR

15. Let f(x) = x>+ x—1. Then f"(x) = 3x> +1 and

3
_ _f(xn)_ X, +x -1

xn+1 n ’ - xn 2
f (xn) 3xn +1

Note that fis cubic and f” is always positive, so there is
exactly one solution. We choose x; = 0.

X, = 0

X, = 1

X, = 0.75

x, = 0.6860465
= 0.6823396

Xg = 0.6823278

x, = 0.6823278
Solution: x = 0.682328.

16. Let f(x) = x* + x—3. Then f"(x) = 4x> +1and

f(xn) xn4+xn—3
xn+1 = xn T = xn - 3

S (xn) 4xn +1
The graph of y = f(x) shows that f(x) = 0 has two
solutions.

iy
%

[—3,3] by [—4, 4]

x,=-15 x, =12

x, =—1.455 x, =1.6541962
Xy =—1.4526332  x; =1.1640373
x, =~—1.4526269 x, =~1.1640351
x5 =—1.4526269 x5 =1.1640351

Solution: x = —1.452627, 1.164035

17. Let f(x) = x* —2x+1—sinx.

Then f’(x)=2x—2cosx and

f(x) )cn2 —2x +1l-sinx

xn+1 n ’ - xn
f (xn) an —2—cos x



17. Continued
The graph of y = f(x) shows that f(x) = 0 has two

solutions
i /

NS

[-4. 4] by [-3. 3]

=03 X =2
x, ~0.3825699 x, ~1.9624598
x, ~0.3862295 x, ~1.9615695
x, =0.3862369 x, ~1.9615690
x5 =0.3862369 x; = 1.9615690

Solutions: x = 0.386237, 1.961569

18. Let f(x) = x* —2. Then f(x) = 4x> and
fx) xt-2
=X

xn+1 n g “n 3
f (xn) 4x
n

Note that f(x) = 0 clearly has two solutions, namely

x= f\‘/g. We use Newton’s method to find the decimal

equivalents
=15
~1.2731481
~1 1971498
~1.1892858
~1.1892071

x, =1.1892071
Solutions: x = +1.189207

O\(ll«lkl&l\)'—‘

19. (a) Since % =3x2=3,dy=(3x> =3)dx.
X

(b) At the given values,
dy=@3- 22— 3)(0.05) =9(0.05) = 0.45.

dy _(1+x)(Q-20)Qx) _ 2-24

20. (a) Since

dx (1+x2)> S 1+x2)?
9.2
dy= 2-2x dx.
(1+xz)2
(b) At the given values,
o2
dy= M(O.l) ﬁ(o 1
[1+(2)1 5?
=-0.024.

21. (a) Since ——(x )( ]+(lnx)(2x):2x1nx+x,

dy=2x Inx+ x)dx.

(b) At the given values,
dy=1[2(1) In(1) +1](0.01) = 1(0.01) = 0.01

Section 4.5

22. (a) Since dx—(x)[ \/—J( —2x)+(W1=-x*)(1)

_ —x? + 1_xz_—)c2+(1—x2)_1—2x2
1-x? 5 Vi-x? Vi-x?
dy= 1= 2x dx
1-x2
1-2(0)°

(b) At the given values, dy =

\1-(0)

23. (a) Since dy e cosx, dy = (cos x)e ™ dx.
by

(b) At the given values,
dy = (cosT) (eSi"”)(—O. H=(-1)(1)(-0.1)=0.1.

24. (a) Since 2 = 3ese| 1= |cot| 1-2 |[ =1
dx 3 3 ) 3

=csc 1—i cot l—i s
3 3
dy=csc 1= 2 Jcot| 1= .
3 3

(b) At the given values,

dy= csc(l—l]cot(l—l}(o.l)
3 3

=0.1csc %cot% =~ (.205525

25.(@) y+xy—x=0

yl+x)=x
_ X
x+1
Since & - GADO-0@ _ 1 ’
dx (x+1)? (x+1)?2
dy= dx .
(x+1)?

(b) At the given values,
0.01

dy=
0+1)?

=0.01.

26. (a) 2y=x*—xy
2dy = 2xdx — xdy — ydx
dy(2+x)=2x—y)dx

dy= Zx—y dx
2+x

(b) At the given values, and y = 1 from the original
2(2)—1
2+2

equation, dy= ( )( 0.05)=-0.0375

(-0.2)=-0.2.
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7. Yooy
dx

2
dy= = dx
241-x?

28, Dy

dy = (5> +5x*)dx

dy
dx

29, = = tan'4x

30. ﬂz(&wxg)

—a* =(na)a”
dx
dy=(8*In8+8x")dx

31. (a) Af = £(0.1)— £(0)=0.21-0=0.21
(b) Since £’(x) =2x+2, f/(0)=2.

Therefore, df =2 dx =2(0.1)=0.2.

© \Af—df\ - \0.21 - 0.2\ =0.01

32.(a) Af = f(1.D) - f(1)=0.231-0=0.231

(b) Since f'(x)=3x*—1, f/(I)=2.
Therefore, df = 2dx =2(0.1)=0.2.

(© \Af—df\ = \0.231 —02\ =0.031

33.(a) Af = £(0.55)— £(0.5) = % 2= —%

(b) Since f’(x)=-x"2, f(0.5)=—4.
Therefore, df =—-4dx=-4(0.05)=-0.2= —%

1

© Af—df:—121+ :

5| 55

34. (a) Af = f(1.01)— f(1) =1.04060401—1= 0.04060401

(b) Since f'(x)=4x>, f'(1)=4.
Therefore, df =4 dx =4(0.01)=0.04.

(¢) |Af - df| =|0.04060401-0.04| = 000060401

35.

36

37.

38.

39

40.

41.

42,

43.

44.

45.

Note that Z—V = 4nr2, dV = 4rxr’dr. When r changes from
r

a to a + dr, the change in volume is approximately
4ma’dr.

. Note that ﬁ =8nr, so dS =8nrdr. When r changes from

dr
a to a + dr, the change in surface area is approximately
8radr.

Note that % = 3x2, s0 dV =3x* dx. When x changes from

a to a + dx, the change in volume is approximately
3a* dx.

Note that ? =12x, so dS =12x dx. When x changes from
x

a to a + dx, the change in surface area is approximately
12a dx.

. Note that d—v =2nrh, so dV =2nxrh dr. When r changes

dr
from a to a + dr, the change in volume is approximately

Note that % =2xr, so dS = 2nrdh. When h changes from

a to a + dh, the change in lateral surface area is
approximately 27r dh.

A=nr?
dA = 2rnrdr
dA = 27(10)0.1) = 6.3 in’

4
v=—_mr
3

dV = 4nrtdr
dV = 471(8)*(0.3) = 241 in?

V:S3

dv = 3s%ds
dVv =3(15)%(0.2) =135 cm?
NG

A=""g
4

3

dA=—sds
2

i

dA= 73(20)(0.5) =8.7 cm?

(a) Note that f’(0)=cos0=1.
L(x)=fO)+ f'0)(x—0)=1+1x=x+1

() £(0.)=L0.1)=1.1



45.

Continued

(¢) The actual value is less than 1.1. This is because the

46.

47.

48.

49.

derivative is decreasing over the interval [0, 0.1], which
means that the graph of f(x) is concave down and lies
below its linearization in this interval.

A
(a) Note that A= 77> and ‘:l— =27r, so dA =27rdr.
r

When r changes from a to a + dr, the change in area is
approximately 2ma dr. Substituting 2 for a and 0.02 for dr,
the change in area is approximately

27(2)0.02) = 0.087 = 0.2513

dA _0.087

(b) — =0.02=2%
A 4r
Let A = cross section area, C = circumference, and
D = diameter. Then D = g, SO d—D = l
/4 dC &

1 pY cY ¢
anddD=—dC. Also,A=n| —| =n| — | =—,

T 2 21 4
) ﬁ = £ and dA = £a,'C. When C increases from

d 21 2

10z in. to 107 + 2 in. the diameter increases by

1 2
dD =—(2) =—=0.6366 in. and the area increases by
T T

1
approximately dA = %(2) =10 in®.
b4

Let x = edge length and V = volume. Then V = x®, and
sodV =3x*dx. With x= 10 cm and dx = 0.01x= 0.1 cm,

we have V= 10*=1000 cm® and
dv= 3(10)2(0.1) =30 cm’, so the percentage error in the
volume measurement is approximately
d—vzizo.03=3%.
V1000
Let x = side length and A = area. Then A = x*and
A
j— =2x, 50 dA =2xdx. We want |dA| <0.024, which
X
gives |2xdx|<0.02x”, or |dx| <0.01x. The side length

should be measured with an error of no more than 1%.

For 6=75°= ?—72[ radians, we have

‘d@‘ <0.04 sinsl—;rcos% =0.01 radian. The angle should be

measured with an error of less than 0.01 radian (or
approximately 0.57 degrees), which is a percentage error of
approximately 0.76%.
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50. (a) Note that V = 7r>h = 107r% = 2.57D?, where D is the

51.

52.

53.

interior diameter of the tank. Then j—v =5nD,
D

s0dV =5mDdD. We want \dv\ <0.01V, which

gives 57D dD| < 0.012.57D?), or|dD| <0.005D. The

interior diameter should be measured with an error of no
more than 0.5%.

(b) Now we let D represent the exterior diameter of the
tank, and we assume that the paint coverage rate
(number of square feet covered per gallon of paint) is
known precisely. Then, to determine the amount of
paint within 5%, we need to calculate the lateral surface
area S with an error of no more than 5%. Note that

S =2nrh=107D, so j—;z 107 and dS =10 dD. We

want |dS| <0055, which gives [107dD|<0.05(107D),

ordD £0.05D. The exterior diameter should be
measured with an error of no more than 5%.

Note that V= n'rzh, where h is constant. Then il—v =2nrh.
r

The percent change is given by
dv _ 2nrhdr _ 2@_ 20.1%}’
Vo mrth r r

=0.2%.

Note that Z—Z = 37zh2, s0 dV =31h* dh. We want

V| <0.01v, which gives ‘37rh2dh‘ <0.01(zh®),

0.01h
3

or ‘dh‘ < . The height should be measured with an

1
error of no more than g%.

4
Since V = gn:r3, we have

1 2
dv =4nridr=4nrt| — |= r—. The volume error in
167 4

. 7'2 .3
each case is simply —in”.
4

Sphere True Tape Radius Volume
Type Radius error Error Error

Orange 2in. 1/8in. | 1/16m in. 1in.2
Melon 4in. 1/8in. | 1/16rx in. 4in3
Beach 7 in. 1/8in. | 1/16min. | 1205in3
Ball
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1
54. Since A = 47r%, we have dA =87rdr = 81r| — |=—.
6 ) 2
The surface area error in each case is simply % in%.
Sphere True Tape Radius Volume
Type Radius Error Error Error
Orange 21in. 1/8in. 1/16m in. lin.
Melon 4 in. 1/8in. | 1/16x in. 2in.

Beach Ball 7 in 1/8 in. 1/16m in. 3.5in.2

55. We have iil =—bg™2, sodW =—bg2dg.
8

aw —b(5.2)2dg 32?
Thel’l moon - ( ) g -

aw_. —b(32)dg 52°
about 37.87 to 1.

_ T _
56. (a) Note that T=27[L1/2g 2 50 i:—ﬂLl 2g 32 and

dg
dT = -nL! 2g_3/zdg.

(b) Note that dT and dg have opposite signs. Thus, if
g increases, T decreases and the clock speeds up.

© —n12g 2 4g = ar

—7(100)"2(980) %2 dg = 0.001
dg ~-0.9765
Since dg ~~0.9765, g ~ 980 0.9765 = 979.0235.

57. True. A look at the graph reveals the problem. The graph
decreases after x=1toward a horizontal asymptote of
x =0, so the x-intercepts of the tangent lines keep getting
bigger without approaching a zero.

58. False. By the product rule, d(uv)=udv + vdu.

59.B. f(x)=¢e"
fy=e*
Lx)=e'+e'(x-1)
L(x)=ex

60. A. y=tanx
dy= (sec2 X)dx = (sec2 m)0.5
dy=-0.25

61.D. f(x)=x—x"+2

f/(x)=1-3x>
3

342

Xp1 =X, — P 2
1-3x,

1-1)*+2

x2 = —72:2

1-3(D)

2-(2°+2 18
)C3 =2_72=7
1-3(2) 11

——=137.87. The ratio is

62.A. f(x)=3x,x=64

, 1, 1
fre0 =64 =
3 48
Yoo = 4+ (66-64)
48
66 = 4.042

The calculator returns 4.041, or a 0.01% difference.

63.1f f’(x)#0, we have x, =x, — ]{,((xl)) =x - f’? : =x,.
X X

Therefore, x, = x,, and all later approximations are also

equal to x,.

1
64.If x, = h, then f’(xl) =—— and

2h1/2
B2
x,=h- | =h=2h=—h. If x =-h, then
2hl/2
1 hl/z
f’(xl):—— and x, =—h— =—h+2h=h
wh 1
2hl/2
0 "
[-3, 3] by [-0.5, 2]
, 1 3
65. Note that f'(x) = gx and so
(x) MRTE
X =X _]]:,( n : =x - ”2/3 =x —3xn =—2xn.F0r
x” X);
3
x; =1, we have X, =-2, X, =4, x, =-8, and
x, =16;]x [=2""

-
e

[-10, 10] by [-3, 3]
66. (a) i. Q(a)= f(a) implies that b0 = f(a).
ii. Since Q'(x)=b, +2b,(x—a), Q"(a) = f’(a) implies
that b = f(a).




66. Continued
iii. Since Q”(x) = 2b,, 0”(a)= f”"(a) implies that
, L@

= T,
In summary, by = f(a), b, = f'(a), and b, = @.
(b) fx)=0-x"

S =-10-07=)=01-07

) ==2(1-x)7 (=) =2(1-x)"
Since f(0)=1,f’(0)=1, and f”(0) = 2, the coefficients are

2
b,=1b =1 and b, = 5 =1. The quadratic approximation

is O(x)=1+x+x°.
(o) /
P

[-2.35, 2.35] by [-1.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.

d gx)=x"
g(x)=—x7?
g”(x) — 2x*3

Since g()=1,g’(1)=—1, and g”(1)=2, the

coefficientsare b =1,b, =-1, and b =%:1. The
0 1 2 2

quadratic approximation is Q(x)=1-(x—-1)+(x— 1)2.

"'\.\
[-1.35,3.35] by [-1.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical

© h(x)=1+x)"

~

' (x)= %(1 +x)7"?

h”(x)= —i(l +x)7"?

Since h(0)=1,h"(0)= %, and h”(0) = —i, the

1
4
2 8

coefficients are b. =1, b = 1, and b, =
0 175 2
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2
The quadratic approximation is Q(x) =1+ g - ?

P

[-1.35, 3.35] by [-1.25, 3.25]

As one zooms in, the two graphs quickly become
indistinguishable. They appear to be identical.

(f) The linearization of any differentiable function u(x) at
x=ais L(x)=u(a)+u’(a)x—a)= by + b (x —a), where
by and b; are the coefficients of the constant and linear
terms of the quadratic approximation. Thus, the
linearization for f(x) at x = 0 is 1 + x; the linearization
for g(x) atx=11is 1 —(x— 1) or 2 — x; and the

linearization for A(x) at x =0 is 1+§.

67. Finding a zero of sin x by Newton’s method would use the

sm(xn )

recursive formula X =X =

' =x —tanx ,and that
n n

n
cos(x,Z )

is exactly what the calculator would be doing. Any zero of
sin x would be a multiple of 7.

68. Just multiply the corresponding derivative formulas by dx.

(a) Since i(c) =0,d(c)=0.
dx

(b) Since a4 (cu)= c@, d(cu)=c du.
dx dx

(¢) Since i(u+v):@+ﬂ, d(u+v)=du+dv
dx dx dx
(d) Since i(u e V)= uﬂ+ vﬂ, dluev)y=udv+vdu.
dx dx dx
du dv
dlu Ve Tu u vdu—udy
(e) Since | L |=—dx _dx g M| TTETETE
dx\ v V2 v v2
(f) Since L — @, d(u™) = nu""du.
dx dx
69. lim tan x — lim sinx / cos x
x—=0 X x—=0 X
. 1 sinx
=lim| ————
x—0\ cosx x
=| im lim 20
x—0 CcoSx =0 x
= =1.
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70.

71.

gla)=c, soif E(a) =0, then g(a) = f(a) and c = f(a).
Then E(x) = f(x)—g(x) = f(x)— f(a)—m(x—a).
E@) _f0)-f@_

Thus
x—a xX—a
im 7DD _ ey 0 1m EX = )~ m.
x—a xX—a x—ax—a
. . . E('x) . o4
Therefore, if the limit of is zero, then m= f’(a) and
xX—a
g (%) = L(x).
f(x)= #+cosx
2Vx+1
3

We have f(0) =1 and f’(0) = 5
L(x)=f(0)+ f'(0)(x-0)
3
=1+—x
2
The linearization is the sum of the two individual

. . . . 1 [
linearizations, which are x for sin x and 1+ Ex for vx+1.

Section 4.6 Related Rates (pp. 246-255)
Exploration 1 Sliding Ladder

1

7.

. Here the x-axis represents the ground and the y-axis

represents the wall. The curve (x,, y,) gives the position of
the bottom of the ladder (distance from the wall) at any
time #in 0 <7<5. The curve (x,, y, ) gives the position of

the top of the ladder at any time in 0 <7<5.

. 0<t<5

. This is a snapshot at = 3. 1. The top of the ladder is

moving down the y-axis and the bottom of the ladder is
moving to the right on the x-axis. The end of the ladder is
accelerating. Both axes are hidden from view.

[=1, 15] by [-1, 15]

dy _ —4T

y'(3)=-4.24 ft/sec®. The negative number means the
ladder is falling.

Since lim y’(f) = —oo, the speed of the top of the ladder

1—(13/3)~
is infinite as it hits the ground.

Quick Review 4.6

L D=\(7T=0) +(0-5) =/49+25 =74

2. Dz\/(b—0)2+(0—a)2 —a? +b?

3. Use implicit differentiation.
d . d
—QRxy+y)=—(x+
, Qxy+y7) I (x+y)
dy

2x—
dx

dy dy
+2y(D)+2y—=(1)+—
y( Y @ I
(2x+2y—1)Q=1—2y
dx
dy  1-2y
dx 2x+2y-1

4. Use implicit differentiation.
d d
—(xsiny)=—(1-
o, siny) == -(1—=xy)
dy . dy
cosy)—+@Giny)()=—x—-y(
(x)( y)dx (sin y) (1) e yd)

d .
(x+xcosy)—y:—y—smy
dx

dy _ —y-—siny
dx x+xcosy
dy  y+siny

dx X+ xcosy

5. Use implicit differentiation.

d , d
—x"=—Ttany
dx dx
dy
2x =sec? y=2
ydx
dy_ 2
dx  sec’y

& =2xcos’ y
dx

6. Use implicit differentiation.

d d
Zln(x+y)=—(
! n(x+y) dx( Xx)

! (de):z
x+y dx

1+Q=2(x+y)
dx

Q=2x+2y—1
dx

7. Using A(-2, 1) we create the parametric equations
x=-2+atand y =1+ bt, which determine a line passing
through A at t = 0. We determine a and b so that the line
passes through B(4, —3) at t = 1. Since 4 = -2 + a, we have
a =6, and since -3 = 1 + b, we have b = — 4. Thus, one
parametrization for the line segment is x = -2 + 6z,
y=1-4t,0<t<1. (Other answers are possible.)



8. Using A(0, —4), we create the parametric equations

x =0+ at and y =—4 + bt, which determine a line passing
through A at = 0. We now determine a and b so that the
line passes through B(5, 0) at # = 1. Since 5 =0 + a, we have
a =15, and since 0 = —4 + b, we have b = 4. Thus, one
parametrization for the line segment is x =57, y=—4+4¢,0
<1< 1. (Other answers are possible.)

9. One possible answer: % <t<—

10. One possible answer: 37” <t<2rm

3r
2

Section 4.6 Exercises

1. Since d—A d—Aﬂ we have d—A=27r ﬂ
dt dr dt’ dt dr’
2. Since é = d—Sﬂ, we have ﬁ =8nr— dr
dt dr dt dt dt’
3. (a) Since d—v dV dh have — = tr? @
dt  dhdt’ dt
(b) Since d—v d—Vﬂ we have =2 hﬂ
dt  dr dt’ dt

v d_, d ,
¢) —=—nar'h=n—@"h
© o r d(r )

dt
AV _a, @m(z )—
dr dr
LA L hﬂ
ar dr dr
dP d

4. (a Z(RI?

(a) — & dt( )

dP_ d o, pdR

—=R—1
dt dt

dt
ar R(Zldl) w2 R

dr dt dt
Gy SYELLS
dt dt

(b) If P is constant, we have 62—1; =0, which means

R p R 4R __2Rdl__2Pdl
dt dt dr 1 dt I3 dt
5. s _ i\/x +y +72
dt dt
o1 d o
dt 2«/x2+y2+z2 dt
ds 1 ( dx . dy dz)
S | iyP o,
dt ol i dr " dr

x@+ dy dz
ds _ " dr Y

a2+ 472
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.dA d absin@
dr di\2

@ da obhe sm6+a-db
de 2\ dr dt

%:l bsined—a+asin9@+abcosed—9
dt 2 dt dt dt

. (a) Since V is increasing at the rate of 1 volt/sec,

d—V =1 volt/sec.
dt

(b) Since / is decreasing at the rate of

lam /sec ﬂ——lam /sec
3 APIRES g T e

(c) Differentiating both sides of V = IR, we have

dv _ dR _dI
N ey e
i dtdt

(d) Note that V = IR gives 12 =2R, so R = 6 ohms. Now
substitute the known values into the equation in (c).

1_2d—R+6 L
dt 3

3-o9R
dt
d—R = thms/sec
dt

R is changing at the rate of % ohms/sec. Since this

value is positive, R is increasing.

. Step 1:

r =radius of plate
A = area of plate

Step 2:

At the instant in question
Step 3:

We want to find d—A

Step 4:
A=mr’

Step 5:

dizdr

dt dt
Step 6:

fTA—Z (50%0.01) = wem? / sec

esin@+ab e« dsine)
dt

s % =0.01 cm/sec, r =50 cm.

207

At the instant in question, the area is increasing at the rate

of rcm?/ sec.
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9. Step 1:

10.

I = length of rectangle

w = width of rectangle

A = area of rectangle

P = perimeter of rectangle

D = length of a diagonal of the rectangle

Step 2:
At the instant in question,

dt
Step 3:

= -2 cm/sec, %zZ cm/sec, /=12 cm, and w=5 cm.

We want to find d—A,d—P, d—D

an .
dt dt
Steps 4, 5, and 6:
@A=Iw
dA  dw dl
—=—4w—
dt dt dt
dA )
o (12)2)+(5)—2) =14 cm“ /sec

The rate of change of the area is 14 cm? /sec.

(b) P=21+2w
ap _,dl_,dw
i “dt  dt
dP

o =2(-2)+2(2) =0 cm/sec
The rate of change of the perimeter is 0 cm/sec.

(©) D=+ +w?
dl dw

a__ 1 (z,dl dw)_’dr*wdz
dt P+ w?
D _(12(-2+(5X) __14

dt ']22_,’_52 13

The rate of change of the length of the diameter is

cm/sec

—& cm/sec.
13

(d) The area is increasing, because its derivative is positive.

The perimeter is not changing, because its derivative is
zero. The diagonal length is decreasing, because its
derivative is negative.

Step 1:

X, y, z = edge lengths of the box
V = volume of the box

S = surface area of the box

s = diagonal length of the box

Step 2:
At the instant in question,
dx dy _

=1 m/sec, =—2 m/sec, ﬂzlmlsec,x=4m,
dt dt dt

y=3m, and z=2m.

Step 3:

We want to find %‘/,ﬁ, and é

dt ar’
Steps 4, 5, and 6:

(@) V=xyz

Wk e
dt xydl dt 7 dt

%/ = (A3 +H2)-2)+(3)2)(1) = 2 m*/sec

The rate of change of the volume is 2 m? /sec.

(b) S=2(xy+xz+yz2)

§2 xﬂ+ yd—x+
dt dt dt

Y a a T
d
d% =2[(4X-2)+B)D+(@XD+ XD

+ YD)+ B +(2X-2)] = 0 m? /sec

The rate of change of the surface area is 0 m? /sec.

(c) slex2 +y2 +z2

dz dx dz a’y]
—+ +y—+z—

s 1 2xﬂ+2 ﬂ+22£
T e Ya T ay
de, dv, d

+y—+
a T a Car

Va2 +y2+ 22

ds _(ADH+3=2)+@D) _ 0

= —=—=0 m/sec
dt V42432422

Vo

The rate of change of the diagonal length is O m/sec.

11. Step 1:

r =radius of spherical balloon
S = surface area of spherical balloon
V = volume of spherical balloon

Step 2:

At the instant in question, %/ =100z ft*/min and r=5 ft.

Step 3:
ds

We want to find the values of ﬂ and —.
dt dt

Steps 4, 5, and 6:

4 3
a) V=—nr
(a) 3 r
d—V=47rr2ﬂ
dr di
1007 = 47(5)* dr
dt
ﬂzlﬁ/min
dt

The radius is increasing at the rate of 1 ft/min.



11. Continued

(b) S =dnr

das dr

— =8nr—

dt dt

ds

— =8m(5X1

” 5D

9 _ 40m 12 / min
dt
The surface area is increasing at the rate of 407
ft* /min.

12. Step 1:

r =radius of spherical droplet
S = surface area of spherical droplet
V = volume of spherical droplet

Step 2:
No numerical information is given.

Step 3:
dr .
We want to show thatd— is constant.
t

Step 4:

S=4mr?, V= ﬁ7rr3, % = kS for some constant k

Steps 5 and 6:

2 dr
dr’

3

Differentiating V = %nr , we have %/ =4rr

Substituting &S for CZ—‘; and S for 4772 , we

havekS:Sﬂ, orSﬂzk.
dt dt

13. Step 1:
s = (diagonal) distance from antenna to airplane
x = horizontal distance from antenna to airplane

Step 2:
At the instant in question,

s =10 mi and %=300 mph.

Step 3:

We want to find @
dt

Step 4:

x2+49=5% orx=+/s> —49

Step 5:

A1 (M): s di

dt o[ _49\ " di) [ g9 di

Step 6:

d_ 10 300)=39 Lioh ~420.08 mph

di 10> a9 Vst

The speed of the airplane is about 420.08 mph.

Section 4.6

14. Step 1:

Inge -
b X

s = length of kite string
x = horizontal distance from Inge to kite

Step 2:
At the instant in question, % =25 ft/sec and s =500 ft
Step 3:

We want to find é
dt

Step 4:

x* +300% =57

Step 5:

2x% = 2s§ or x%z s%
Step 6:

209

At the instant in question, since x> 43002 = s2, we have

x=5% =300% = /5002 — 300? = 400.
ds ds

Thus (400)25) = (500)%, so —, so — =20 ft/sec. Inge

dt dt
must let the string out at the rate of 20 ft/sec.

15. Step 1:

C

6in.

—r—
The cylinder shown represents the shape of the hole.
r =radius of cylinder
V = volume of cylinder

Step 2:

. . . dr 0.001in. 1
At the instant in question, — = — =
dt 3min 3000

and (since the diameter is 3.800 in.), » = 1.900 in.

Step 3:
We want to find d—v
dt

Step 4:
V=nrr’(6)=6mnr’
Step 5:

in./min
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15. Continued 17. Step 1:
Step 6: F-45 mH
dv 1 197 iy
Y 12701.900) —— |= % =0.00767 \’\
dt 3000 ) 2500
.3, . 6m \r
~(0.0239 in’ /min. 5

The volume is increasing at the rate of approximately

0.0239 im”’ /min.
r =radius of top surface of water

16. Step 1: h = depth of water in reservoir
T V = volume of water in reservoir
f Step 2:
At the instant in question v _ —50 m*/min and =5 m
—— aeston. -
r = base radius of cone Step 3: " 4
h =height of cone We want to find — < and %
V = volume of cone dt dt
Step 4:
Step 2: L6
v Note that —=— by similar cones, sor =7.5h.
At the instant in question, =4 m and A =10 m?/min. ro45
Step 3: Then V = %mzh = én(7.5h)2h =18.75zh’
We want to find dh and ﬂ Steps 5 and 6:
dt dt AV Jh
Step 4: (a) Since V = 18.757rh3,5 =56.251h’ o
Since the height is 3 of the base diameter, we have 5. dh
8 Thus —50 = 56.257(5 )E’ and
3 4
h=—Q2r) or r=—h.
8 3 0 dh__ 8 m/min = -2 cm/min.
| | (4 > L6 dt 2251 o
= — 2 P —_— = 1
We also have V= 3 7rh 3 ”( 3 h) h 27 We will The water level is falling by ;—2 =~1.13 cm/min.
pi4
3
use the equations V = 167h and r= %h (Since % <0, the rate at which the water level is
Step 5 and 6: falling is positive.)
2
(a) av = 167h” dh (b) Since r = 7.5h,£ = 7.5ﬁ = _30 cm/min. The rate of
dt 9 dt dt dt 3r
167(4)? dh change of the radius of the water’s surface is
10= —
9 _80 —8.49 cm/min.
dh_ 45 m min——llzscm/min 7
dr 1287 37 18. (a) Step 1:
The height is changing at the rate of y = depth of water in bowl
1125 . V = volume of water in bowl
——=11.19 cm/ min.
Step 2:
(b) Using the results from Step 4 and part (a), we have At the instant in question, av — 6 m®/min and
dr _4dh _4(1125) 375 . dt
—=——=— — [|=——cm/min. —8m
dt 3dr 3\32n) 8n Y :
The radius is changing at the rate of Step 3:
375 =14.92 cm/min. We want to find the value of %
T

Step 4:

V=§y2(39—y) or V=137ry2—§y3
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18. Continued Step 3:
. A
Step 5: We want to find —?,fl—[, and %
dv d Yy
= 6my-my)
dt dt Steps 4, 5, and 6:
Step & ; @ x>+ =169
Y
—6=|26m(8)-m(8*) | =
[ ] dt 2x dl+ 2y dy =0
_ dy dr
—6=144r dar To evaluate, note that, at the instant in question,
dy 1 .
—=-———=-0.01326 m/ - 2= _192 =
ity min y=169—x2 =\169-122 =35.
25 .
or —— =-1.326 cm/min Then 2(12)5)+ 2(5)ﬂ =0
6 dt
. 2 2 _ 2 dy dy
(b) Since r” +(13—y)" =137, d—:—lth/sec or—d—=12ﬁ/sec
t t
_ 2 _ 2
r= \/1 69-(13-y)" = \/26y -y The top of the ladder is sliding down the wall at the rate
(c) Step 1: of 1.2. ft/sec. (Note that the downward rate of motion is
y = depth of water positive.)
r =radius of water surface 1
V = volume of water in bowl (b) A= P
Step 2: dA_l( dy, dx)
At the instant in question, av =—6 m’/min, y=8m, i 28 di dl
dt Using the results from step 2 and from part (a), we have
and therefore (from part (a)) L m/min. A _ l[(12)( 12)+(5X5)] = _19 ft?/sec. The area of
dt 241w dt 2

Step 3: the triangle is changing at the rate of —59.5 ft% /sec.

We want to find the value of %

() tanf="
Step 4: X
d
From part (b), r=426y—y*. a9 %—yd—j
2 _ -
Step 5: sec” @ i 2
dr _ ( 26-2 ) 13-y dy 5
dr 2 ,26y y ,26y yz dt Since tan6 = o’ we have
Step 6: (for030<ﬂ)c059212 and sosec? 0%=@.
dr _ 13-8 1 _5( 1 2 13 12 144
dt ,26(8) _ 82 24w 12 241 13
_ 2858 ~ —0.00553 m/min Combining this result w11t6119 tzz res(ull;s)( frcl);r; stc(a;))(ZS)and
125” from part (a), we have — VI A E— )
or ——— =—0.553 cm/min 12
2r deo . . .
— =—1 radian/sec. The angle is changing at the rate
19. Step 1: dt
x = distance from wall to base of ladder of —1 radian/sec.
y = height of top of ladder 20. Step 1:

A = area of triangle formed by the ladder, wall, and ground

h = height (or depth) of the water in the trough
6 = angle between the ladder and the ground

V = volume of water in the trough

Step 2: Step 2:

. . . dx
At the instant in question, x = 12 ft and I 5 ft/sec. At the instant in question, %/ —25%3/min and k=2 ft.
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20. Continued
Step 3:

We want to find @
Step 4:

The width of the top surface of the water is %h, SO we

have V = ;(h)(:hJ(IS), orV=10h*

Step 5:

av = ZOh@
dt dt

Step 6:

25= 20(2)@
dt

dh =0.0625= L ft/min
dt 16

The water level is increasing at the rate of % ft/min.

21. Step 1:
[ = length of rope
x = horizontal distance from boat to dock
6 = angle between the rope and a vertical line

Step 2:
. . .dl
At the instant in question, x =2 ft/sec and [ =10 ft.

Step 3:
We want to find the values of —@ and ﬁ
dt dt

Steps 4, 5, and 6:

(a) x=v1*-36

a1
dr /lz ~136 dt
3 = L(—D =-2.5 ft/sec
dt\10% - 36
The boat is approaching the dock at the rate of
2.5 ft/sec.
(b) 6=cos™ ?
@__ 1 [ 6)d
dt 6\ 2 )dt
1_ _
)
do 1 6 3
— =————| ——— [(-2) =——— radian/sec
- ( 10° )( TR

The rate of change of angle 0 is —% radian/sec.

22,

23.

24.

Step 1:

x = distance from origin to bicycle

y = height of balloon (distance from origin to balloon)
s = distance from balloon to bicycle

Step 2:
We know that ﬂ is a constant 1 ft/sec and @t isa

constant 17 ft/sec. Three seconds before the instant in
question, the values of x and y are x =0 ft and y = 65 ft.
Therefore, at the instant in question x =51 ft and y = 68 ft.

Step 3:

. ds . . .
We want to find the value of @ at the instant in question.
t

Step 4:
s=\¢x2+y2
Step 5:

b
ds_ 1 (yode o i\ _Va
TR ] GRS R
Step 6:

ds _ SDHA7)+(68)1)

i 512 + 682

The distance between the balloon and the bicycle is
increasing at the rate of 11 ft/sec.

=11 fi/sec

dy_dvdx o0, 2y 20 B o 208
dt dt dt dt (1+x?%) dt
Since % = 3cm/sec, we have
dy_ —L);z cm/sec.
dt (I+x%)
@ Do D 120 34
a  [1+(-=2)°17 5 5
(b) a_ —760(2) 5 =0 cm/sec
dt 14+07)
(c) Q = —%(2))2 ~—0.00746 cm/sec
dt (1+20°)
ﬂz ﬂdlz (3x2 _4)dix
dt dx dt dt
. dx dy 2
Since — = -2 cm/sec, we have — =8 —6x~ cm/sec.
dt dt
dy 2
(a) E =8—-6(-3)" =—46 cm/sec

(b) % =8-6(1)%> =2 cm/sec

(© % =8—6(4)% = —88 cm/sec



25.

26.

Step 1:

x = x-coordinate of particle’s location
y = y-coordinate of particle’s location
6 = angle of inclination of line joining the particle to the

origin.

Step 2:

At the instant in question,
@=10 m/sec and x =3 m.
dt

Step 3:

We want to find ﬁ
dt

Step 4:
y _x°

Since y=x2, we have tan 6 =—="—=x and so,
X X

for x>0,
0=tan"' x.
Step 5:
o _ 1 ds
dt 1+x2% dt

Step 6:

do 1
dr 143
The angle of inclination is increasing at the rate of
1 radian/sec.

(10) =1 radian/sec

Step 1:

(x, )
\\\ 0
\\

x = x-coordinate of particle’s location

y = y-coordinate of particle’s location

6 = angle of inclination of line joining the particle to the
origin

Step 2:

. . . dx
At the instant in question, I =-8m/secand x =—4m.
t

27.
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Step 3:
We want to find ﬁ,
dt

Step 4:

—(—x) 2

Since y=+/—x, we have tan0 = Y_NTX
X X
and so, for x <0,

/2
1=

0=+ tan"'[~(—x) —tan~ (—x)"V2.

Step 5:
do 1 1 32 dx
aw__ 1 i -1 |—
di - 1+[(-x) 2P (( 2
S S
- l 2(_x)3/2 dt
X
__ 1 &
2J—-x(x—1) dt
Step 6:
ﬁ:;(—g):% radian/sec
dt - 2Ja(-4-1) 5

The angle of inclination is increasing at the rate of

2 radian/sec.
5

Step 1:

r =radius of balls plus ice

S = surface area of ball plus ice
V = volume of ball plus ice

Step 2:

At the instant in question,

dv . 3, . 1

E =-8mlL/min = -8cm’/minandr = 5(20) =10cm.
Step 3:

We want to find —d—S.
dt

Step 4:

We have V = %an and S =47mr®. These equations can be

1/3 23
combined by noting that r = V , s0 S=4rn V
4r 4

Step 5:

ds (3" (3Yav (v av
D gl 2 2] | 2| |
dt 3N\ 4r 4m ) dt 4w dt

Step 6:

Note that V = ﬁﬂ(10)3 _ W.
3 3
ds 3 40007 Y3 6
— =2 (—8) = ——2_ — 1 6cm?/min
“ a3 31000

. das . ..
Since d— <0, the rate of decrease is positive. The surface
t

area is decreasing at the rate of 1.6 cm? /min.
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28. Step 1:
x = x-coordinate of particle
y = y-coordinate of particle
D = distance from origin to particle

Step 2:
At the instant in question, x=5m, y= 12 m,
dx

=-1 m/sec, and ﬂ =—5m/sec.
dt dt

Step 3:

We want to find d—D
dt

Step 4:
D=\/x2+y2
Step 5:

LN
ap 1 (,de oody)_ Ca ar
d e e\ )T [
Step 6:

db _ (5D +A2)(=5) _

de V5% +122

The particle’s distance from the origin is changing at the
rate of -5 m/sec.

—Sm/sec

29. Step 1:
Street ...
light
16 ft
6 ft
Shadow
s

x = distance from streetlight base to man
s = length of shadow

Step 2:
At the instant in question, % =—5ft/secand x = 10ft.
Step 3:
., ds
We want to find —.
dt
Step 4:

L . + .. .
By similar triangles, %: % This is equivalent to

16s =6s5+6x,0r s = gx.

Step 5:
ds_3ds
dt 5dt

30.

31.

Step 6:
s _ i(—5) = —3fi/sec
dt 5
The shadow length is changing at the rate of —3 ft/sec.
Step 1:

s = distance ball has fallen
x = distance from bottom of pole to shadow

Step 2:

2
1
At the instant in question, s = 16(2] =4ftand

é = 32[;] =16ft/sec.

dt
Step 3:

We want to find @

dt
Step 4:
. . x=30 «x .. .
By similar triangles, 0 = —. This is equivalent to
-5

50x — 1500 = 50x — sx, orsx =1500. We will use

x=1500s"".

Step 5 :

K _sp052E

dt dt

Step 6:

? =-1500(4)*(16) = —1500 ft/sec

t

The shadow is moving at a velocity of —1500 ft/sec.

Step 1:

x = position of car (x =0 when car is right in front of you)
6 = camera angle. (We assume 0 is negative until the car
passess in front of you, and then positive.)

Step 2:

At the first instant in question, x = 0 ft and ? =264 ft/sec.
t

1
A half second later, x5(264) =132 ftand ax =264 ft/sec.

dt
Step 3:
., do .
We want to find d— at each of the two instants.
t

Step 4:
O=tan"'|

132
Step 5:
do 1 1 dx

dt LY 1324
1+
132



31. Continued

Step 6:
When x=0: ﬁ = SR N (264) = 2 radians/sec
dt 0 Y \132
1+ —
132
When x =132: a6 = 1(l)(264) = 1 radians/sec
dt 132 21132
1+ —
132
32. Step 1:

p = x-coordinate of plane’s position
x = x-coordinate of car’s position
s = distance from plane to car (line-of-sight)

Step 2:
At the instant in question,

dp . ds
=0,—— =120mph, s =5mi, and — =—160mph.
P=" P d P

Step 3:

We want to find —@.

Step 4:
(x—p)P+3* =5’
Step 5:

dx dp ds
2=p)| ———|=25s—
x p)(dt a’t) S
Step 6:

Note that, at the instant in question,

x=+52-3% =4mi.
204 - 0)(‘2‘— 120) =2(5)(-160)

8(dx— 120) =-1600
dt

dx_ 120 =-200
dt

dx
— =—-80mph
dt P

The car’s speed is 80 mph.

33. Step 1:
s = shadow length
6 = sun’s angle of elevation

Step 2:

At the instant in question,

s =60 ft and % =0.27°/ min = 0.00157 radian/min.
Step 3:

We want to find —é.
dt

Step 4:

tanf = @ ors=_80cotf
s

34.
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Step 5:

4 _ goesc? 0%
dt dt

Step 6:

Note that, at the moment in question, since tan

0 :@ and0<9<£, Wehavesinezi and so
60 2 5

csc@zé.
4

2
ds = —80(2] (0.00157m)

dt
12i
—0.1875r L 1210
min 1 ft
=—-2.25m in./min
=~ —7.11in./min

Since ? <0, the rate at which the shadow length is
t

decreasing is positive. The shadow length is decreasing at
the rate of approximately 7.1 in./min.

Step 1:

a = distance from origin to A

b = distance from origin to B

6 = angle shown in problem statement

Step 2:

At the instant in question, % =-2m/ sec,Z—b = 1 m/sec,
t 1

a=10m, and b =20m.

Step 3:
We want to find d—e
dt
Step 4:
tanf = a orf=tan"! a
b b
Step 5:
da db da  db
b——a— b—-a—
e _ 1 dt dt __dt dt
dt 2 b2 a2+ b2
a
1+ —
Step 6:
ﬁ — w = —0.1radian / sec
dt 10% +20%

= —5.73 degrees/sec

To the nearest degree, the angle is changing at the rate of
—6 degrees per second.
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35. Step 1:

o b B
a = distance from O to A
b = distance from O to B
¢ = distance from A to B

Step 2:
At the instant in question, a =5 nautical miles, b=3

nautical miles, @ =14 knots, and @ =21 knots.
dt dt

Step 3:

We want to find k,
dt

Step 4:
Law of Cosines : ¢ =a” +b> —2ab cos120°
2 =a’+b*+ab
Step 5:
de | da db db da

2c—=2a—+2b—+a—+b
dt dt dt dt dt

Step 6:
Note that, at the instant in question,

c=Na® +5 +ab = (5% +3) +(5X3) =49 = 7

2(7)? =2(5)14)+23)2D+(5)2D +(3x14)
t

@ =29.5 knots

dt
The ships are moving apart at a rate of 29.5 knots.

36. True. Since £ = 2nﬂ, a constant
dt dt

dr . dcC
— results in a constant —.
di dt

37. False. Since ﬁ = 2n'rﬂ, the value of ﬁ depends on r.
dt dt dt

38.A v=s

dv =3s%ds
24 =352(2)
s=2in

39.E. sA = 65>

dsA =12sds
12 =12sds

ds:l

N
V=g
v =35ds =35> 1
24 =3s ’
s=8in

q0.c. T _D
ydt dt

06, _dy
0.8 dt
% =2.25, but it is negative because y is decreasing.
@
dt

=-2.25.

41.B. v=nr’h
SA=2nrh
dv=rmridh

dsA = 2rchdr
dv =dsA

wrtdh = 27hdr
dh _,dr

R 2
2 dr
100 (12

dr=01"

sec

42. (a) de _ i(ﬁ —6x% +15x)
dr dt

= (3x? —12x+15)d—x
dt
=[3(2)* - 12(2) +15](0.1)
=03
ar_ i(9x) o _ 9(0.1)=0.9
dt dt

dt
dp _dr_dc

dt dt dt

m d(x3 —6x> +45)

=09-03=0.6

dz_dt X

45 \dx
dt

=[3x2—12x -
(x X xz
= [3(1.5)2 —12(1.5)— 14552}(0‘05)

=-1.5625



42. Continued

dr d dx
b) —=—(70x)=70—="70(0.05) = 3.5
(b) I dt( x) I (0.05)

dap = ﬂ— de =3.5-(-1.5625)=5.0625
dt dt dt
43. (a) Note that the level of the coffee in the cone is not
needed until part (b).
Step 1:

V| = volume of coffee in pot

y = depth of coffee in pot
Step 2:

av, 3
—=101in" / min
dt

Step 3:

We want to find the value of ?
1

Step 4:
Vi =9y
Step 5:

dr o dr
Step 6:
d

10=97%
dt

& = 10 = (0.354 in./min

dt 9m

The level in the pot is increasing at the rate of
approximately 0.354 in./min.

(b) Step 1:

V2 = volume of coffee in filter

r =radius of surface of coffee in filter
h = depth of coffee in filter

Step 2:

. . . de .3 .
At the instant in question, 7 =-10in" /min and

t

h=5in.
Step 3:
We want to find —@.
dt
Step 4:
Note that I g, SO r= ﬁ
h 6 2
3
Then V2 = l717r2h = ﬂ
3 12
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Step 5:

v, _nh® dn

dt 4 dt
Step 6:

2
o= dh
4 dt

dh 8 . .
— = ——in./min
dt hY/4

Note that % < 0, so the rate at which the level is
t

falling is positive. The level in the come is falling at the

rate of i = (.509 in./min.
R4

44. Step 1:

QO =rate of CO2 exhalation (mL/min)

D = difference between CO, concentration in blood
pumped to the lungs and CO, concentration in blood
returning from the lungs (mL/L)

y = cardiac output

Step 2:
At the instant in question, Q =233 mL/min, D =41 mL/L,
b __, (mL/L)/min, and 49 _ () L/ min?.
dt dt
Step 3:
. dy
We want to find the value of d—
t
Step 4:
_Q
y =
D
Step 5:
pdQ _ ,dD
dy __dt — at
dt D?
Step 6:
dy _ (41X0)—(233)-2) _ 466 ~0.277 L/min>
dt 41)? 1681

The cardiac output is increasing at the rate of approximately

0.277 L/min2.

45. (a) The point being plotted would correspond to a point on

the edge of the wheel as the wheel turns.

(b) One possible answer is 8 = 167¢, where ¢ is in seconds.
(An arbitrary constant may be added to this expression,
and we have assumed counterclockwise motion.)
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45. Continued dv du

dy d
. . . b) —=—w)=u—+v—
(c) In general, assuming counterclockwise motion: dt dt dt dt

&, sinO% = ~2(sin6)(167) =327 sin 0 =u(0.03v)+9(0.02)

dt =0.01uv
D 00509 = 2c0s0) (167) = 3270030 =001y
dr dt The total production is increasing at the rate of
At O = % . 1% per year.
dx T Quick Quiz Sections 4.4-4.6
=3 sin = ~167(\/2) = =71.086 fi/sec
dy _ T _ _ 1.B.x  =x wiCo)
=32 cos” = 167(x/2) = 71.086 fi/sec T AT
— 3 _
At9=gz fx)=x 2-i-2x 1
2 ff(x)=3x"+2
dx 4
— =-327sin—=-327 = -100.531 ft/sec O} +20-1 3
dt 2 x,=1- == g
ﬂ=32ﬂcos£=0 ft/sec 3(13) 2
dt 2 3 3
Atf=rm: 3 g +2 g -1
ax_ 327 sinz = 0 fi/sec ¥y = 5 2 =0.465
dt
dy 3 =] +2
d— =32 cosm =-32m =—-100.531 ft/sec 5
t
46. (a) One ggssibl; answ:z)r: e 2.B. 2= 4y
X = CosU,y= + S
z=V4?+3% =5
(b) Since the ferris wheel makes one revolution every J d J
10 sec, we may let 6 =0.27¢ and we may write zzj =&y 2yl
x=30c0s0.27¢, y =40 +30 sin0.277. (This assumes dt dfzy dﬁfly
that the ferris wheel revolves counterclockwise.) 5= 4(3t) 3;
In general: dy 1
ax _ -30(sin0.27¢)(0.27) = —67sin 0.2 7wt 7 B 5
dt = . . = . @ ~ Q ~ 3[1J ~ 1
% =30(cos 0.27t1)(0.27) = 67 cos 0.2t dr dt 3
3.A. x(t)=70
Atr=5: ¥(t) = 60t
% — —6sin7 = 0 fisec 2(0) = (600 +70%)"
t
dy % _ 136001 +4900)™2 (72001)
— =6mcosm =6m(—1)=—-18.850 fi/sec a2
dt dz _ 7200(4)
Atr=8: dt 2(3600(4)* +4900)"?
dz
X 6xsind.6x ~17.927 flsec o0
dt !
dy
= 6mcos1.6m ~5.825 ffsec 4.() f)=+x
x=25
dy d dv  du 1 1
47.(a) = =— W) =u—+v— 105y = Loy V2o L
dr dt drdt 1'25) 5 (25) 0
= 1(0.05v) +v(0.04u) J26 - 5+i(26—25) s
= 0.09uv 10
= 0.09y

Since ? =0.09y, the rate of growth of total production
t

is 9% per year.



4. Continued

_ S
b)x = ,f(x)=x"-26=0
n+l n f(
f s P20,
2(5)

© foo=39x
x=3

Fen= 1(27)‘2/ =L

27

\/_ 3 + — (26 27)
\/7 2. 963

Chapter 4 Review (pp. 256-260)
1. y=xV2—-x
y'= [ ]( D+(2-x)1)
2

x4+ 2(2 X)

- 2N2—x

4-3x
2V2—x

The first derivative has a zero at

4 4(
3

Critical point value: x = y= 0 =1.09
Endpoint values: x=-2 y=—4
x=2 y=0
The global maximum value is 4\9/7 atx —% and the global

minimum value is —4 at x = -2.

2. Since y is a cubic function with a positive leading

coefficient, we have lim y=—co and lim y = co. There are
X—>—oco X—yoo

no global extrema.

3. y/ — (XZ)(eI/xz)(_2X—3)+ (ellxz)(zx)

=2¢!" (—1+xJ
x

26" (x=1) (x +1)
X

Intervals x<-1 -1<x<0 O<x<l1 x>1

Sign of Y’ - + - +

Behavior of y | Decreasing | Increasing | Decreasing | Increasing
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d

”_ a[zellxz (_xfl + x)]

- (2e”"§)(x*2 T+ (—x 0 2e ) (<217
=21+ 207 = 2x72)

26" (¢ —x+2)

S (G ox+d)

—0.5)2+1.75]

x4

~ 2el/ﬂ[(xz

The second derivative is always positive (where defined),
so the function is concave up for all x # 0.
Graphical support:

VIV

Hinirmurm
w=1

V¥=2.7182818
[-4, 4] by [-1, 5]

(@ [-1, 0) and 1, =)

(b) (—e0,—1] and (0, 1]
(€) (=0, 0) and (0, =)
(d) None

(e) Local (and absolute) minima at (1, ) and (-1, ¢)

(f) None

. Note that the domain of the function is [-2, 2].

y'= ( J( 2x)+(V4=x) (D)
2 4-x°

_—x +(4-x?)

B V4-x?

_ 4-0247

B 4—x*

Intervals 2<x<-2 | N2<x<2 | V2<x<2
Sign of y’ _ + -

Behavior of y Decreasing Increasing Decreasing

(V4=x*X—4x)—(4-2x )[ ](—Zx)
4-x?

4-x*

”

y =
_ 2x(x* —6)
(4—x2)?

Note that the values x =++/6 are not zeros of y” because
they fall outside of the domain.

Intervals —2<x<0 O<x<?2

Sign of y” + -

Behavior of y Concave up Concave down
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4. Continued
Graphical support:

y” — e)c—l

The second derivative is always positive, so the function is
concave up for all x.

Graphical support:
Haxiraura \
=1.4142136 |v=2
[-2.35, 2.35] by [-3.5. 3.5] e
@ [V2,42] BT heo
[—4, 4] by [-2, 4]
(®) [-2, —\2]and [2, 2] @) [L. )
©c20 (B) (o, 1]
@0 (©) (o2, =)
(e) Local maxima: (-2, 0), (\/E ,2) N
one
Local minima: (2, 0), (_\/E’ -2 (e) Local (and absolute) minimum at (1, 0)
Note that the extrema at x = ++/2 are also absolute (f) None
t .

extrema 7. Note that the domain is (-1, 1).

® 0,0 -
y=(—x2)y¥
5. y’=1—2x—4x3 y’=—l(1—x2)_5/4(—2x): X
Using grapher techniques, the zero of y” isx = 0.385. 4 2(1—x%)"*
Intervals x<0.385 0.385<x Intervals -1<x<0 O0<x<l
Sign of y’ + - Sign of y’ - +
Behavior of y Increasing Decreasing Behavior of y | Decreasing | Increasing

Yy =-2-12x* =2(1+6x?)
The second derivative is always negative so the function is
concave down for all x.

Graphical support:

A

Haxirum /

#=.285458  Iv=1.214B047
[—4, 4] by [-4, 2]

(a) Approximately (—oo, 0.385]

(b) Approximately [0.385, o)

(¢) None

(d) (oo, 0)

(e) Local (and absolute) maximum at = (0.385, 1.215)
(f) None

6. y=¢"-1
Intervals x<1 I<x
Sign of y’ - +

Behavior of y Decreasing Increasing

3
4
4(1— x2y2
_(1=x)" 2247 +5x7]
4(1— x2)"?
3x%+2
41— x2)H
The second derivative is always positive, so the function is
concave up on its domain (-1, 1).

2(1—x2>5’4<1>—<xx2>( J(l—xz)”“(—zx)

y =

Graphical support:
Miniraura

20 =1

[-1.3. 1.3] by [-1. 3]

(@10, 1)

(b) (-1, 0]
©-1LD

(d) None

(e) Local minimum at (0, 1)
(f) None



. (x* = 1Y) = (xX3x%) _ 2x3 +1

8.y
(x’=1? (x*=1°
Intervals x <0713 2B el I<x
Sign of y’ + - -
Behavior of y | Increasing Decreasing Decreasing

. (P =DH6xH) - (2% +D(2)(x’ =1 (3x?)

o’ -
_ (@ =D6x)—2x +1)(6x7)
=1’
_ 6x> (x3 +2)
(=1’
Intervals | , o o3 | o3 .y 0| O<x<l1 l<x
Sign of y” + - - +
Behavior | Concave Concave Concave Concave
of y up down down up

Graphical support:

L

Maxirum
W==2937008 |Y=5291337
[-4.7.4.7] by [-3.1, 3.1]

(@) (~o0, =27 ] = (=e0, ~0.794]

() [27%, 1) =~ [-0.794, 1) and (1, o)
(€) (00,273 ) = (=00, =1.260) and (1, o)
d) (273, 1) =~ (-1.260, 1)

(e) Local minimum at

(—2-“3, % 713 J =(=0.794, 0.529)

®) (—2“3,; . 2”3]z(—1.260,0.420)

9. Note that the domain is [-1, 1].
, 1
y ==
V1-x?
Since ¥’ is negative on (-1, 1) and y is continuous, y is
decreasing on its domain [-1, 1].

y” — i[_(l_xZ)—l/Z]
dx
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Graphical support:

S

~

~1.175, 1.175] b —3_5—”]
[ Iy[ 2

(a) None
(b) [-1, 1]
(© (-1,0)
(d) O, 1

(e) Local (and absolute) maximum at (-1, 7);
local (and absolute) minimum at (1, 0)

ofos
2

10. This problem can be solved graphically by using NDER to

obtain the graphs shown below.

’

y y /‘\
\/ _‘“_/,.
Haxirura
w=1.7220508 I¥=1830127
=4, 4] by [~1, 0.3]

LA
e

Zere
H=-2.504226 V=0
[-4, 4] by [-0.7, 0.8]

ZeFo
w=-1.732081 I¥=0
[-4, 4] by [-0.4, 0.6]

An alternative approach using a combination of algebraic
and graphical techniques follows. Note that the
denominator of y is always positive because it is equivalent

to (x+ )% +2.

Ve (2 +2x+3)D) = (0)2x+2)

(x2 +2x+3)?
—x2+3

(P +2x+3)

Intervals x<—\/§ - 3<x<\/§ \/§<x
Sign of y’ - + -
Behavior of y | Decreasing Increasing Decreasing

1 2\-3/2 X
=—1=-x)"(2x)=———
2 (1—x2)3/2
Intervals -1<x<0 O<x<l1
Sign of y” + -

Behavior of y Concave up Concave down

e (% +2x+3)3(=2x) = (=x2 +3X2) (x> +2x +3)2x +2)

(x* +2x+3)°
(07 +2x+3)(2x) — 2(2x + 2)(—x% +3)

(x*+2x+3)°
2% -18x-12

(P 4+2x+3)
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10. Continued

Using graphing techniques, the zeros of 2x -18x-12
(and hence of y”) are at x = —2.584, x = —0.706,

and x = 3.290.

(—2.584, (-0.706,
Intervals | (—oo, —2.584) ~0.706) 3.290) (3.290, =)
Slgl,l, of 3 + 3 +
y
Behavior Concave Concave | Concave | Concave
of y down up down up

@) [3, V3]

(B) (~o,— 3] and [/3, %)
(c) Approximately (—2.584, —0.706) and (3.290, o)
(d) Approximately (—eo, —2.584) and (—0.706, 3.290)

(e) Local maximum at [\/5 ,\/54_1}
=~ (1.732,0.183);
local minimum at [—\/g, = i — 1]

~(~1.732,-0.683)

(f) =(-2.584, —0.573), (-0.706, —0.338), and (3.290, 0.161)

1
11. For x > 0, y’=i Inx=—
dx by

L

Forx<0: y' = iln(—x) =
dx —-X

(="
X

Thus y’ = 1 for all x in the domain.

X
Intervals (-2,0) ©,2)
Sign of y’ - +
Behavior of y Decreasing Increasing
y” — _X—Z

The second derivative always negative, so the function is
concave down on each open interval of its domain.

Graphical support:

/’

[-2.35, 2.35] by [-3. 1.5]
(2) (0, 2]

(b) [-2,0)

(¢) None

(d) (-2, 0) and (0, 2)

(e) Local (and absolute) maxima at (=2, In 2) and (2, In 2)
(f) None

12. y"=3cos3x—4sin4dx
Using graphing techniques, the zeros of y”in the domain

0<x<2marex=0.176, x=0.994,x=§:1.57,

x=2.148, and x = 2.965, x =3.834, x = 37” x=5.591

LA R
Intervals | 0<x<0176 [0.176 <x<0.994 | 0.994 <x < 217 <x<2.148|2.148 <x<2.965

Sign of + - + - +
Behavior . . . . .
of y Increasing Decreasing Increasing Decreasing Increasing

3r 3r
Intervals |2.965<x<3.834 | 383 <x<— | —=<x<3391 | 5591<x27
Sign of - + - +
Behavior . . . .
of y Decreasing Increasing Decreasing Increasing

y”=-9sin3x—16 cos 4x

Using graphing techniques, the zeros of y” in the domain
0<x <27 are x =0.542, x = 1.266, x = 1.876,
x=2.600, x =3.425, x =4.281, x = 5.144 and x = 6.000.

Intervals [0 <x < 0.542[0.542 < x<1.266|1.266 < x < 1.876/1.876 < x < 2.600[2.600 < x < 3.425

Sign of y”| - + - + -
Behavior | Concave Concave Concave Concave Concave
of y down up down up down

Intervals 3425 <x<4.281 |4.281 <x<5.144 | 5.144 <x<6.000 | 6.00<x<2m
Sign of y” + - + -
Behavior Concave Concave Concave Concave

of y up down up down
Graphical support:




12. Continued

(a) Approximately [0, 0.176],

(b) Approximately [0.176, 0.994],

%, 2.148:|, [2.965, 3.834], and |:327T,5.591:|

(c) Approximately (0.542, 1.266), (1.876, 2.600),
(3,425, 4.281), and (5.144, 6.000)

(d) Approximately (0, 0.542), (1.266, 1.876),
(2.600, 3.425), (4.281, 5.144), and (6000, 27)

(e) Local maxima at = (0.176,1.266), (72[, 0}

0.994, ﬂ [2.148,2.965], [3.834, 3;] and [5.591, 27:]

14.
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o

(b) (=0, 0] and { oo)

&l

(©) (===, 0)
(@) (0, =)

(e) Local maximum at (2, 16} = (1.155, 3.079)
NERENA)

(f) None. Note that there is no point of inflection
at x = 0 because the derivative is undefined and no
tangent line exists at this point.

y' ==5x* +7x* +10x +4

Using graphing techniques, the zeros

3 of y” are x =—0.578 and x =~ —1.692.
and (2.965, 1.266), 7 2|, and (2m, 1);
. Intervals | x<-0.578 | 0378 | jgor<x
local minima at = (0, 1), (0.994, —0.513), <1.692
(2.148, -0.513), (3.834, —1.806), and (5.591, —1.806) Sign of y’ - + -
Note that the local extrema at x = 3.834, x= - Behavior
ofe that the local extrema atx = 5.634, x = P of y Decreasing | Increasing Decreasing

and x=5.591 are also extrema.

() =(0.542, 0.437), (1.266, —0.267), (1.876, —0.267),
(2.600, 0.437), (3.425, -0.329), (4.281, 0.120),

y” ==20x> +14x+10
Using graphing techniques, the zeros of y” is x = 1.079.

Graphical support:

W

H=1.1847005 1¥=3.0759201Y

[—4, 4] by [-2, 4]

(5.144, 0.120), and (6.000, —0.329) Intervals x <1.079 1079 <x
-x Sign of y” + —
13. v/ = —e 7, x<0 .
Y 4 — 3x2, x>0 Behavior of y Concave up Concave down
Intervals 2 2 Graphical support:
x<0 O<x<—4= —=<Xx
NG
Sign of + — J./t\
Bil}a\yllor Decreasing Increasing Decreasing oy Iv=20.517208
[-4, 4] by [-10, 25]
V= {ix ﬁ Z 8 (a) Approximately [—0.578, 1.692]
’ (b) Approximately (—eo, —0.578]and [1.692, o)
Intervals x<0 O<x (c) Approximately (—eo, 1.079)
Sign of y” + — (d) Approximately (1.079, o)
Behavior of y Concave up Concave down (e) Local maximum at = (1.692, 20.517); local minimum

at=(~0.578, 0.972)
() =(1.079, 13.601)
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15.y=2x4/5 —x
’—§x’1/5—2x4/5 _ 8—9x

Y75 5 53x
8
Intervals x<0 O<x<§ —<Xx
Sign of y’ - + —
Bf;l}a\ynor Decreasing Increasing Decreasing
po 8 65 _ 376)6—1/5 _42+9%)
25 25 25x%°
2
Intervals xX<—— —§<x<0 O<x
Sign of y” + - -
Behavior Concave Concave Concave
of y up down down
Graphical support:

e

#=.8888B89 _ |v=1.0111963
[—4, 4] by [-3, 3]

8
ol

8
(b) (=o0,0] and [9, oo)

(d) (—z, 0) and (0, o)

(e) Local maximum

979 |9

at (0, 0)

4/5
2 20 2 2
® {‘9’ 9" (‘9) )(9 0-667)

4/5
at[g 10, (8) ]z(o.ggg, 1.011); local minimum

16. We use a combination of analytic and grapher techniques to

solve this problem. Depending on the viewing windows
chosen, graphs obtained using NDER may exhibit

strange behavior near x = 2 because, for example,

NDER (y, 2) = 5,000,000 while y” is actually undefined at

x=2.The graph of y=

5—4x+4x*—x

3
is shown below.

x=2

\

/‘

Haxirum
H=.21E19658 IV= -2 4iP34E
[-5.875, 5.875] by [-50, 30]

’

_ (x=2)(A+8x—3x") — (5—dx+4x" —x)()

(x=2)?

2% +10x* —16x+3
(x-2)*

The graph of " is shown below.

I

[-5.875, 5.875] by [-50, 30]
The zero of y" is x = 0.215.

Intervals x<0.215 0215<x<2 2<x
Sign of y’ + - -
Beha(:/fl()))r Increasing Decreasing Decreasing
(x=2)*(=6x% +20x - 16) — (=2x” +10x* —16x +3)
" (2Xx-2)
y = 1
(x=27)

(= 2)=6x7 +20x —16)— 2(=2x" +10x* —16x +3)
(x-2)°

_ 2 —6x7 +12x-13)
(x-2)°

The graph of y” is shown below.

\

_

—

Zera
#=3.7099768 |v=0
[-5.875, 5.875] by [-20, 20]

The zero of x* — 6x2 +12x—13 (and hence of y”) is

x=3.710.
Intervals x<2 2<x<3.710 | 3.710<x
Sign of y” - T ~
Behavior of y | Concave down Concave up Concave
down




16. Continued
(a) Approximately (—ee, 0.215]
(b) Approximately [0.215, 2) and (2, o)
(c) Approximately (2, 3.710)
(d) (—oo, 2) and approximately (3.710, o)
(e) Local maximum at = (0.215, —2.417)
(f) = (3.710, —3.420)

17.y = 6(x +1)x—2)*

Intervals x<-1 -1<x<?2 2<x
Sign of y’ - + +
Behavior . . .
of y Decreasing Increasing Increasing
Y =6(x+1)(2)(x—2)+6(x— 2)2(1)
=6(x—-2)[2x+2)+(x—-2)]
=18x(x—-2)
Intervals x<0 O<x<?2 2<x
Sign of y” + - +
Behavior Concave Concave Concave
of y up down up

(a) There are no local maxima.

(b) There is a local (and absolute) minimum at x = —1.

(c) There are points of inflection at x =0 and at x =2.

18. y'=6(x+1)(x—2)

Intervals x<-1 -l<x<2 2<x
Sign of y’ + - +
Behavior . . .
of y Increasing Decreasing Increasing
” d 2
y'=—06(x"—x-2)=6(2x—1)
dx
1 1
Intervals xX<— —<X
2 2
Sign of y” - +
Behavior of y Concave down Concave up

(a) There is a local maximum at x =—1.
(b) There is a local maximum at x = 2.

1
(c) There is a point of inflection at x = 5

19.

20.

21.

22,

23.

24.

25.

26.
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Since a4 —lx_4—e_x =x+e*,
dx\ 4

1
fx)= —Zx_4 —e " +C.

. d
Since d—secx =secxtanx, f(x)=secx+C.
x

Since i 21nx+1x3+x :g+x2+1,
dx 3 X

f(x)=21nx+%x3+x+C.

Since i gx3/2+2x1/2 :\/;+L,
dx\ 3 \/;

2
f)= gx3’2 +2x'" +C.

f(x)=—cosx+sinx+C
f(m)=3
1+0+C=3
c=2
f(x)=—cosx+sinx+2

f()c)=%x4/3 +éx3 +%x2 +x+C
JH=0

é+1+1+1+C=0
4 3 2

f(x)—zx +§x +5x +x—§
v()=s"(t)=9.8t+5
s() =492 +51+C
5(0)=10
Cc=10
s()=4.92 +5t+10

a)=v'(t)=32
v(t)=32t+C,
v(0) =20

C, =20
v(t) =s"(t) =32t +20
s()=161> +201+C,
s(0)=5

C,=5

s(t)=161* +20t+5

225
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27. f(x)=tanx
f(x)= sec? x

o Do)
21
=—1+2[x+ZJ

=+ X1
2

28. f(x)=secx

f/(x)=secxtanx

e

- \5+\E(1)(x—ﬂ

-T2
4
29. f(x):1+tanx
F/(x) = —=(1+ tanx) 2 (sec x)

1

cos? x(1+tan x)2

(cos x +sin x)2

L(x) = f(0)+ f’(0Xx-0)
=1-1(x-0)
=—x+1

30. f(x)=e" +sinx
f/(x)=e" +cosx
L(x)= f(0)+ f’(0Xx—0)
=1+2(x—0)
=2x+1

31. The global minimum value of % occurs at x = 2.

32. (a) The values of y” and y” are both negative where the
graph is decreasing and concave down, at T.

(b) The value of y” is negative and the value of y” is
positive where the graph is decreasing and concave up,
at P.

33. (a) The function is increasing on the interval (O, 2].

(b) The function is decreasing on the interval [—3, 0).

(c) The local extreme values occur only at the endpoints of
the domain. A local maximum value of 1 occurs at
x =—13, and a local maximum value of 3 occurs at

x=2.

34. The 24th day

35. y
2k
¢/T\| 1 1 Ly x
3 \ 3
\j#(x)
-3+

36. (a) We know that fis decreasing on [0, 1] and increasing on
[1, 3], the absolute minimum value occurs at x =1 and
the absolute maximum value occurs at an endpoint.
Since f(0) =0, f(1)=-2, and f(3) =3, the absolute
minimum value is —2 at x = 1 and the absolute
maximum value is 3 at x = 3.

(b) The concavity of the graph does not change. There are
no points of inflection.
(© y
I3+

=3}

37.(a) f(x) is continuous on [0. 5, 3] and differentiable
on (0.5, 3).

1
X

(b) f’(x)=(x)( )+(IHX)(1)=1+1nx

Using a=0.5 and b= 3, we solve as follows.

.« fB®-f(0.5)
FO="="05
31n3-0.51n0.5
l+In¢ = 2027 92In0->
25
33
)
Inc= - 1
25

Ine=0.4In(27v2)—1
c=e'(2742)%
c=e"'31458 ~1.579

(c) The slope of the line is
m= SO -j@ = 0.41n(27\/5)0.2 In 1458, and the line

b-a
passes through (3, 3 In 3). Its equation is
vy =0.2(In1458)(x —3)+ 3 In3, or approximately

y=1457x-1.075.



37. Continued
(d) The slope of the line is m = 0.2In1458, and the line
passes through
(e, f(e) = (e Y1458, ¢! Y1458(~1+0.2 In 1458))
= (1.579, 0.722).

Its equation is
y=0.2(0n1458)(x—¢)+ f(c),

y=0.21In1458(x —e'31458)
+¢'1458(~14 0.2 In 1458),

y=0.2(n1458)x — "' 1458,
or approximately y=1.457x—1.579.

38.(a) v(t)=s"(1)=4—61-31
(b) a@®)=v'(t)=-6—6¢
(c) The particle starts at position 3 moving in the positive
direction, but decelerating. At approximately
t = 0.528, it reaches position 4.128 and changes
direction, beginning to move in the negative direction.
After that, it continues to accelerate while moving in the
negative direction.
39. (@) L(x)= f(0)+ f"(0)Xx—0)
=-1+0(x-0)=-1

(b) £(0.1)=L(0.1)=—1

(c) Greater than the approximation in (b), since f”(x) is
actually positive over the interval (0, 0.1) and the
estimate is based on the derivative being 0.

40. (a) Since % = (= )+ (e )2x)+Q2x—x1)e ™,
X

dy=(2x—x>)e " dx.

(b) dy=[2(1)-(1)*)e”"X0.01)
=0.01¢”!
=~ (.00368
1633001.59

41. (a) With some rounding, y= ————
1417.471¢7006378

(b)

[0, 80] by [0, 1600000]
1633001.59

+829,210 = 2,305,337
1417.471¢700637860)

(c) y=
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(d) Using the Second Derivative, we find the maximum rate
of growth about 1885. We find a point of inflection
here, which shows the begining of a decline in the rate
of growth.

1 1.
y= 633001.59 = 2,462,000, which is the
1+17.471¢7 00978
approxiate maximum population.

(f) There are many possible causes. Advances in
transportation began drawing the population southward
after 1920, and Tennessee was well-situated
grographically to become a crossroads of river, railroad,
and automobile routes. By the year 2000 there had been
numerous other demographic changes. It should be
pointed out that the census years in the data
(1850-1910) include the years of the Civil War and
Reconstruction, so the regression is based on unusual
data.

42. f(x)=2cosx—+1+x

f/(x)=-2sinx—
241+ x
Fx)
xn+l_ n_ ’
fix,)

ZCOan —Jl+xn

=x -
" 1

—Zsinxn -
2Jl+xn

The graph of y = f (x) shows that f(x) = 0 has one solution,

near x = 1.
[-2. 10] by [-6, 2]
x, = 1
X, = 0.8361848
X, = 0.8283814
x, = 0.8283608

x, = 0.8283608

Solution: x = 0.828361
43. Let 7 represent time in seconds, where the rocket lifts off
at r=0. Since a(t)=v’(t) =20, m/sec’> and
v(0) = 0 m/ sec, we have v(t) = 20¢, and so
v(60) =1200 m/sec. The speed after 1 minute (60 seconds)
will be 1200 m/sec.
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44.

45.

46.

47.

Let 7 represent time in seconds, where the rock is blasted
upward at = 0. Since a(t) = v'(f) = —3.72 m/sec 2and

v(0) =93 m/sec, we have v(r) =-3.72t+93. Since
s’(t)=-3.72t +93 and s(0) = 0, we have

s(t)=—1.86t* +93t. Solving v(t) = 0, we find that the rock
attains its maximum height at # = 25 sec and its height at
that time is s(25)=1162.5 m.

Note that s =100—2r and the sector area is given by

11
A=nr2| 2 |= S = r(100=2r) = 507 — 2. To find
mr) 20 2

the domain of A(r)=50r— %, note that 7 >0 and

0<s<2mr, which gives 12.1= ﬂ <r<50. Since
T+l

A’(r) =50-2r, the critical point occurs at r = 25. This

value is in the domain and corresponds to the maximum
area because A”(r)=-2, which is negative for all . The

greatest area is attained when r =25 ft and s =50 ft.

y
27

(x,27—x%)

[ -4 _ 4\

For 0 < x <27, the triangle with vertices at (0, 0) and

(£x, 27 — x?) has an area given by
1
A(x) = E(2x)(27 —x?)=27x-x’. Since

A’=27-3x> =3(3-x)3+x) and A” = =61, the critical
point in the interval (0, 4/27) occurs at x = 3 and

corresponds to the maximum area because A”(x) is

negative in this interval. The largest possible area
is A(3) = 54 square units.

If the dimensions are x ft by x ft by 4 ft, then the total
amount of steel used is x> + 4xh fi>. Therefore,
108 - x*

4x

x2+4xh =108 and so h=

. The volume is given

_108x—x’

by V(x)=x*h= =27x-0.25x>. Then

V’/(x)=27-0.75x> = 0.75(6 + x)(6— x) and
V”(x)=—1.5x. The critical point occurs at x = 6, and it

corresponds to the maximum volume because V”(x) <0

_g2
6 =3ft The

for x > 0. The corresponding height is

base measures 6 ft by 6 ft, and the height is 3 ft.

48. If the dimensions are x ft by x ft by A ft, then we have

2
x*h=32 and so h= 3—2 Neglecting the quarter-inch
X

thickness of the steel, the area of the steel used is

12
A(x)= x> +4xh=x>+ —8 We can minimize the weight
X

of the vat by minimizing this quantity. Now

2
A(x)=2x—128x7% = —2(x3 — 4% and
X

A”(x)=2+256x". The critical point occurs at x =4 and
corresponds to the minimum possible area because

2
A”(x) >0 for x > 0. The corresponding height is 2—2 =2 ft.

The base should measure 4 ft by 4 ft, and the height should
be 2 ft.

2

2
h
49. We have r* +(2] =3,507> = 3—%. We wish to

minimize the cylinder’s volume

2 3
V:nrzh:n[3—};Jh:37rh—nf: for 0 < h <2/3.

2
_3zh %(2+h)(2—h) and

Since d—v =3r
dh

2
ﬂ = —ﬂ, the critical point occurs at h=2 and it
dn® 2

, d’v
corresponds to the maximum value because — < 0 for
dh

22
h > 0. The corresponding value of ris 3—? = \/5 The

largest possible cylinder has height 2 and radius \/5
12—-h

50. Note that, from similar cones, 2: T, so h=12-2r.

The volume of the smaller cone is given by

I 1 2
V= gmzh - g7zr2(12—2r) = 4nr? —?”ﬁ for0<r<6.

Then Z—V =8mr—2mr’ = 2rr(4—r), so the critical point
r

occurs at r = 4. This critical point corresponds to the

maximum volume because Z—V >0 for 0<r<4 and
r

Z—V <0 for 4 <r<6. The smaller cone has the largest
r

possible value when =4 ft and 4 = 4 ft.



51. 71
Lid
T  frmmmmmmmmmmmmmmee
X
P
10 in | |
Base 1
1 1
I St
X
J-I— —
x— —x
L 15in. {

(@) V(x)=x(15-2x)5-x)

(b, ¢) Domain: 0 <x<5

Haziraum;
w=1.861B739 Y¥=B6.019118

The maximum volume is approximately 66.019
and it occurs when x =1.962 in.

(d) Note that V(x)=2x>—25x% +75x,

50 V/(x)=6x> —50x +75.
Solving V’(x) =0, we have
EEUE: V(=50)> —4(6X75) _ 50£+/700
2(6) 12
_50+10V7 25457
o2 6
These solutions are approximately x=1.962 and x =6.371,

so the critical point in the appropriate domain occurs at
25— 5\/;
X=——.
6

52. y
10T

(x, 8 cos 0.3x)

—2r7 -p P \Zp X
S L
F0r0<x<?,the area of the rectangle is given by

A(x)=(2x)8cos 0.3x) =16xcos0.3x.
Then A’(x) =16x(—0.3 sin 0.3x) +16(cos 0.3x)(1)
=16(cos 0.3x—0.3 x sin 0.3x)
Solving A’(x)=0 graphically, we find that the critical

point occurs at x=2.868 and the corresponding area is
approximately 29.925 square units.
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53. The cost (in thousands of dollars) is given by
C(x) = 40x +30(20 — y) = 40x + 600 — 30V x* — 144.

Then C’(x) = 40—$(2x) =40 — _30x
2x* —144 Vx? —144.
Solving C’(x)=0, we have:
30x — 40

Vx?—144
3x=4vx%—144

9x% =16x% - 2304
2304 = 7x>

Choose the positive solution:

x=+ 2

5

y=vx?-122 :376: 13.607 mi
7

54. The length of the track is given by 2x+27r, so we have
2x+2nr =400 and therefore x = 200 —zrr. Then the area
of the rectangle is

~18.142 mi

A(r)=2rx
=2r(200—7r)
= 400r—27rr2, forO<r< @
/4

Therefore, A’(r) = 400 —47r and A”(r) = —4x, so the

. . 100 L
critical point occurs at ¥ =—— m and this point
b4

corresponds to the maximum rectangle area because
A”(r)<0 forall r.

The corresponding value of x is

x=200-r7 100 )_ 100 m.
/4
The rectangle will have the largest possible area when
x=100 m and r=@m
T

55. Assume the profit is k dollars per hundred grade B tires and
2k dollars per hundred grade A tires.

Then the profit is given by

P(x):2kx+k-M
- X
=2k.(20—5x)+x(5—x)
25—x
:2k.20—x
5—x
— — p— — 2 p—
P'(x)=2k-(5 x)(—2x) (2? x)(=D
5-x)
x2—10x+20
5-x)
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55. Continued

The solutions of P'(x) =0 are

10 £/(=10)% — 4(1)(20
x= 10 O] )=5i\/§,sothesolutioninthe

2(1)

appropriate domain is x =5— \/g =2.76.
Check the profit for the critical point and endpoints:
Critical point:  x=2.76 P(x)=11.06k
End points: x=0 P(x)=8k

x=4 P(x)=8k
The highest profit is obtained when x = 2.76 and y = 5.53,
which corresponds to 276 grade A tires and 553 grade B
tires.

56. (a) The distance between the particles is | ()| where

f= —cost+cos[t+ZJ. Then

T 3
f'(t) =sint sm[t+4]

Solving f’(r) = 0 graphically, we obtain ¢ = 1.178,
t = 4.230, and so on.

L~ T

2EFa
W=1.1780872 ¥=0
[0, 2] by [-2, 2]

Alternatively, f’(r) = 0 may be solved analytically as
follows.

, . T\ m| . T\«
DE t+—|-= |- t+— |+=
1@ s1n|:( 8) 8:| s1n|:( 8) 8:|
. T T T). w

=|sin| t+— |cos——cos| t+— |sin—
{5 o 5o |

. T T T). @

—| sin| t+— |cos—+cos| t +— [sin—

ol o reol i+t

. T T
=-2sin—cos| t+— |,
8 8
so the critical points occcur when

cos(t + Z} =0,ort= 3?” + k. At each of these values,

f= iZcos% =~=+(.765 units, so the maximum

distance between the particles is 0.765 units.

(b) Solving cost = cos(t + Z] graphically, we obtain

t=2.749, t = 5.890, and so on.

D i
o

Intersection
R=2.74BE96 Y=-.923879%

[0, 27] by [-2., 2]

Alternatively, this problem may be solved analytically

as follows.
T
cost=cos| t+—
&

T\ 7w T\ w
cos||t+— |——|=cos||t+= [+
(o555 5
T T T). ® /4 n
cos| t+— |cos—+sin| t+— [sin— = cos| 1+ = [cos—
e e e
. T)|. T
—sin| t+— |sin—
[r+5)d
2sin t+£ sinEZO
8 8
sin(t+”):0
8

7
t:—”+k7r
8

The particles collide when 7 = % = 2.749 (plus multiples

of rif they keep going.)

57. The dimensions will be x in. by 10 — 2x in. by 16 — 2x in.,
50 V(x) =x(10 = 2x)(16 — 2x) = 4x° — 52x*+ 160x for
0<x<5.

Then V’(x) = 12x” — 104x + 160 = 4(x — 2)(3x — 20), so the
critical point in the correct domain is x = 2.

This critical point corresponds to the maximum possible
volume because V' (x) > 0 for 0 < x <2 and V’(x) < 0 for

2 < x < 5. The box of largest volume has a height of 2 in.
and a base measuring 6 in. by 12 in., and its volume is

144in>-

Graphical support:
Haxirmur
#=2 =14y

[0, 5] by [-40, 160]



58.

59.

Step 1:
r=radius of circle
A = area of circle

Step 2:

. . .o d 2
At the instant in question, d—r =——m/sec and =10 m.
t

b4
Step 3:

We want to find ﬁ
dt

Step 4:
A=nr?

Step 5:

dA dr

—=2nr—
dt dt

Step 6:
aa_ 27m(10) _2)- —40
dt T

The area is changing at the rate of —-40 m?/sec.

Step 1:

x = x-coordinate of particle

y = y-coordinate of particle

D = distance from origin to particle

Step 2:

At the instant in question, x=5m, y= 12 m,
dx

— =—1m/sec, and @ =—5m/sec.
dt dt

Step 3:

We want to find d—D
dt

Step 4:
D= \/xz +y?

Step 5:

a__ 1
dt Z\lxz +y2

Step 6:
db _ (=D +A2)(=5) _

de V5% +122

. aD . . L .
Since d— is negative, the particle is approaching the
1

origin at the positive rate of 5 m/sec.

—Sm/sec
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60. Step 1:

61.

x = edge of length of cube
V = volume of cube
Step 2:

At the instant in question,

%/ =1200 cm*/min and x = 20 cm.

Step 3:
We want to find @
dt

Step 4:
v=x
Step 5:

dl =3x2 dl

dt dt
Step 6:

1200 =320 &

dt

ax =1cm/min

dt
The edge length is increasing at the rate of 1 cm/min.
Step 1:

x = x-coordinate of point
y = y-coordinate of point
D = distance from origin to point

Step 2:

231

. . . dD .
At the instant in question, x =3 and — =11 units per sec.

dt
Step 3:

We want to find @
dt

Step 4:

Since D? = x2 +y2 andy:x3 2, we have

D=vx>+x> forx>0.

Step 5:

dD 1 2 d.x

e (2x+3H) =

dt 2\/x2+x3( T )dt
2x+3x% dx  3x+2 dx

Toxirx di 2iex di
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61. Continued
Step 6:

_33)+2dx

s dr

dx .
— =4 units per sec
dt

11

62. (a) Since ﬁ = E, we may write h = S—V orr= %
r 4 2 5
(b) Step 1:
h = depth of water in tank
r = radius of surface of water
V = volume of water in tank

Step 2:
At the instant in question,
4V S # /min and h =6 .
dt
Step 3:
We want to find —@.
dt
Step 4:
V=—nr*th=—nh’
3 75
Step 5:
dv 4 ,dh
=—7
dt 25 dt
Step 6:
5=t per®
25 dt
dh =— 125 = —0.276 ft/min
dt 144r

. dh, . . .
Since ; is negative, the water level is dropping at the
t

positive rate of = (0.276 ft/min.

63. Step 1:

r =radius of outer layer of cable on the spool
6 = clockwise angle turned by spool
s = length of cable that has been unwound

Step 2:

At the instant in question, ? =6 ft/secand r=1.2ft
t

Step 3:

We want to find d—e
dt

Step 4:
s=r0

Step 5:

. . . ds df
Since r is essentially constant, — =r—
dt dt

Step 6:
6= 1.2d—9
dt

d—e =5 radians/sec
dt

The spool is turning at the rate of 5 radians per second.

64. a(t)=Vv'(t) = —g = —32 fi/sec?
Since v(0) =32 fifsec, v(r) = 5"(r) = =321 +32.

Since s(0)=—17 f, s(r) =—16¢* +32¢—17.
The shovelful of dirt reaches its maximum height when
v(t) =0, at t = 1sec. Since s(1) =—1, the shovelful of dirt is

still below ground level at this time. There was not enough
speed to get the dirt out of the hole. Duck!

65. We have V = l;rrzh, oo Y 2 and av = 2 dr.
3 dr 3 3

When the radius changes from a to a + dr, the volume

2
change is approximately dV = gﬂah dr.

66. (a) Let x = edge of length of cube and S = surface area of

cube. Then S = 6x2, which means ? =12x and
x

dS =12x dx. We want |dS|<0.025, which gives
[12x dx| 0.02(6x?) or |dx| < 0.01x. The edge should be

measured with an error of no more than 1%.

(b) Let V = volume of cube. Then V = x3, which means

‘% =3x2 and dV = 3x2dx. We have ‘dx‘ <0.0lx,

which means ‘3x2dx‘ <3x2(0.01x) = 0.03V,

SO ‘dV‘ <0.03V. The volume calculation will be

accurate to within approximately 3% of the correct
volume.



67. Let C = circumference, r = radius, S = surface area, and
V = volume.

(a) Since C =2mr, we have Z—C =2m and so dC =27 dr.
r

dr

r

dac

27rdr‘

0.4cm
<
2rr ‘

=0.04 The

Therefore,
10cm

calculated radius will be within approximately 4% of
the correct radius.

(b) Since S = 47rr2, we have § =8nmr and so
r

dS =8nr dr. Therefore,
ﬁ 8nrdr| |2dr

N 4xr? r

<2(0.04) = 0.08. The

calculated surface area will be within approximately 8%

of the correct surface area.
4
(¢) Since V= 777,'7‘3, we have d—v =47r® and so
3 dr
dV =4xr? dr. Therefore

2
dl drr® dr

Vv

- . T <300.04)=0.12.

4
—nr
3

The calculated volume will be within approximately
12% of the correct volume.

a+20

68. By similar triangles, we have % = , which gives

ah= 6a+120, or h =6+120a"" The height of the lamp
post is approximately 6+120(1 5)"! = 14 ft. The estimated

error in measuring a was

1
‘da‘ <lin = - fi Since ¥ = 120472, we have
12 da

‘dh‘ = ‘—1 20a7% da

1 2
<120(15)7%| — [== f, so the
12) 45
. . ., 2 8 .
estimated possible error is +— ft or +— in.

69. ? =2 sin x cos x — 3. Since sin x and cos x are both
x

between land —1, the value of 2 sin x cos x is never greater

than 2. Therefore, ? <2 —3=-1 for all values of x.
x

. dy . . .
Since 2 is always negative, the function decreases on

dx
every interval.
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70. (a) f has a relative maximum at x = —2. This is where
f’(x)=0, causing f’ to go from positive to negative.

(b) fhas a relative minimum at x = 0. This is where
f’(x)=0, causing f’ to go from negative to positive.

(¢) The graph of fis concave up on (-1, 1) and on (2, 3).
These are the intervals on which the derivatives of f are

increasing.
(G)) ¥y
| 1 I B N
-3 3
71.(a) A=nr’
aA =27rdr
dt
)
d7A =27(2) 1 = EEL
dt 3 3 sec
(b) dA=dV
4 1
—rw=—-nr*dh
3 3
%n =—m(2)*dh
dn_in.
dt sec
4
dA 3" 4 in?
(© =3 =gt
dh 1 3 in.
72.(a) 2a+4b=60
b=15-2a
V = na*b = ma*(15-2a)
2
WV _30mq-
da 2
2
3070 =4
a=20
2(20)+4b =60
b=5
(b) The sign graph for the derivative il;—v = 3ﬂTa(ZO —a) on
a
the interval (0,30) is as follows:
+ —
.
0 20 30

By the First Derivative Test, there is a maximum at
x=20.



