Exam
Name___________________________________
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. | ||
Determine the intervals on which the function is increasing, decreasing, and constant. | ||
1) |
![]() | 1) ______ |
A) Increasing on (-∞, 4); Decreasing on (-4, ∞); Constant on (4, ∞) | |
B) Increasing on (4, ∞); Decreasing on (-4, ∞); Constant on (-4, 4) | |
C) Increasing on (4, ∞); Decreasing on (-∞, -4); Constant on (-4, 4) | |
D) Increasing on (-∞, 4); Decreasing on (-∞, -4); Constant on (4, ∞) |
Determine the domain and range of the function. | ||
2) |
![]() | 2) ______ |
A) domain: (-∞, 1]; range: [0, 3] | |
B) domain: [-3, 1]; range: [-3, 0] | |
C) domain: [-3, 0]; range: [-3, 1] | |
D) domain: [0, 3]; range: (-∞, 1] |
For the piecewise function, find the specified function value. | ||
3) |
f(x) = {![]() f(5) | 3) ______ |
A) 25 | |
B) -20 | |
C) 9 | |
D) 51 |
For the pair of functions, find the indicated domain. | ||
4) |
For f(x) = ![]() Find the domain of f(x). | 4) ______ |
A) [0, 3) ∪ (3, ∞) | |
B) (1, 3) ∪ (3, ∞) | |
C) [1, 3) ∪ (3, ∞) | |
D) [1, ∞) |
Find the average rate of change of the function over the given interval. | ||
5) |
y = ![]() | 5) ______ |
A) 2 | |
B)
![]() |
|
C) 7 | |
D)
- ![]() |
6) |
Find the intervals where the function is concave up and concave down and the point of inflection![]() | 6) ______ |
A) up (1, oo) down (-oo, 1) (1,-5) | |
B) up (-oo, 1) down (1, oo) (1,-5) | |
C) up (1,oo) down (-oo, 1) (0, -3) | |
D) up (1,oo) down (-oo, 1) (2, -7) |
Solve the problem. | ||
7) |
Use the graphs to find the value of (f + g)(3).![]() | 7) ______ |
A) 1 | |
B) 0 | |
C) -1 | |
D) 3 |
8) |
Use the tables to find (fg)(-8).![]() ![]() | 8) ______ |
A) -25 | |
B) -56 | |
C) 6 | |
D) 64 |
Determine whether or not the function is one-to-one. | ||
9) |
![]() | 9) ______ |
A) No | |
B) Yes |
10) |
![]() | 10) ______ |
A) No | |
B) Yes |
Decide whether the given functions are inverses. | ||||
11) |
| 11) ______ |
A) No | |
B) Yes |
12) |
| 12) ______ |
A) Yes | |
B) No |
Decide whether or not the functions are inverses of each other. | ||
13) |
![]() | 13) ______ |
A) No | |
B) Yes |
If f is one-to-one, find an equation for its inverse. | ||
14) | f(x) = 7x - 4 | 14) ______ |
A)
f-1(x) = ![]() |
|
B)
f-1(x) = ![]() |
|
C) Not a one-to-one function | |
D)
f-1(x) = ![]() |
15) |
f(x) = ![]() | 15) ______ |
A)
f-1(x) = ![]() |
|
B) f-1(x) = x2 - 9, x ≥ 0 | |
C) Not a one-to-one function | |
D) f-1(x) = (x + 9)2 |
16) |
f(x) = ![]() | 16) ______ |
A)
f-1(x) = ![]() |
|
B) Not a one-to-one function | |
C)
f-1(x) = ![]() |
|
D)
f-1(x) = ![]() |