

Level 2: Volume 2-Atomic Clocks Are Ticking

1.1 Identify the rate of growth or decay represented by each of the following exponential equations:

a. $y = 229 \cdot 0.44^x$ b. $y = 750 \cdot 1.10^x$
c. $y = 99.95 \cdot 3^x$ d. $y = 82 \cdot 0.7^x$

a. This represents decay and the rate of decay is $100 - 44 = -56\%$
b. This represents growth because $100\% + 10\% = 110\%$ So the rate of growth is 10%
c. This also represents growth $100\% + 200\% = 300\%$ so the rate of growth is 200%
d. This represents decay. The rate of decay is $100\% - 70\% = 30\%$.

1.2 Evaluate each equation in Problem 1.1 for the following values: $x = 3$, $x = 0.5$, and $x = 1/3$.

$y = 229 \cdot 0.44^x$	$y = 750 \cdot 1.10^x$	$y = 99.95 \cdot 3^x$	$y = 82 \cdot 0.7^x$
$y = 229 \cdot 0.44^3 = 19.507$	$y = 750 \cdot 1.10^3 = 998.25$	$y = 99.95 \cdot 3^3 = 2698.7$	$y = 82 \cdot 0.7^3 = 28.126$
$y = 229 \cdot 0.44^{0.5} = 151.9$	$y = 750 \cdot 1.10^{0.5} = 786.61$	$y = 99.95 \cdot 3^{0.5} = 173.12$	$y = 82 \cdot 0.7^{0.5} = 68.606$
$y = 229 \cdot 0.44^{\frac{1}{3}} = 174.18$	$y = 750 \cdot 1.10^{\frac{1}{3}} = 774.21$	$y = 99.95 \cdot 3^{\frac{1}{3}} = 144.15$	$y = 82 \cdot 0.7^{\frac{1}{3}} = 72.808$

1.3 Evaluate each of the expressions below.

a. $64^{\frac{1}{2}}$ b. 16^{-4}
c. $15625^{\frac{1}{6}}$ d. $\sqrt[3]{343}$

a. $\sqrt{64} = 8$
b. $16 \cdot 16 \cdot 16 \cdot 16 = 65536$
c. $\sqrt[6]{15625} = 5$
d. 7

1.4 Write an exponential equation in the form $y = a \cdot b^x$ to model each of the following situations:

a. an initial population of 63 and a growth rate of 14%
b. a decay rate of 0.8% and an initial population of 741
c. an initial population of 2 and a growth rate of 250%
d. an initial population of $4 \cdot 10^9$ and a decay rate of 25%

a. $y = 63 \cdot 1.14^x$
b. $y = 741 \cdot 0.992^x$
c. $y = 2 \cdot 3.5^x$
d. $y = (4 \cdot 10^9) \cdot 0.75^x$

1.5 From the moment a new car is driven off the lot, its value begins to depreciate. This situation can be modeled using exponential decay. The table below shows how the mean value of a car decreases over time.

Year after Purchase	Mean Value (\$)
0	26,756
1	19,700
2	16,738
3	13,937
4	11,775
5	9750

- Determine the rate of decay in this car's value.
- Write an equation in the form $y = a \cdot b^x$ to model this situation.
- Use your equation to estimate the value of the car 10 years after it was purchased.

These are the decay rates between each year:

- 26%
- 15%
- 17%
- 16%
- 17%

The average of these rates is

- 18%

So a loss of 18% of its value each year.

b. The equation is : $y = 26756 \cdot 0.82^x$

c. After 0 years the car will be worth:

$$y = 26756 \cdot 0.82^{10} \\ = \$3,678$$

Additional Review—for use with Activity 2

2.1 Evaluate each of the following expressions:

a. 7^{-2}

b. $81^{-\frac{1}{4}}$

c. $\frac{1}{6^{-3}}$

a. $\frac{1}{7^2} = \frac{1}{49}$

b. $\frac{1}{\sqrt[4]{81}} = \frac{1}{3}$

c. $6^3 = 216$

2.2 Rewrite each expression below using positive exponents.

a. $x^{-\frac{1}{2}}$

b. $x^{-\frac{2}{3}}$

c. $\sqrt[3]{x}$

d. $\frac{1}{x^{-9}}$

e. $\frac{1}{\sqrt[5]{32}}$

f. $\frac{1}{x^{-\frac{3}{5}}}$

a. $\frac{1}{x^{\frac{1}{2}}}$

b. $\frac{1}{x^{\frac{2}{3}}}$ or $\left(\frac{1}{x^2}\right)^{\frac{1}{3}}$ or $\left(\frac{1}{x^{\frac{1}{3}}}\right)^2$

c. $x^{\frac{1}{7}}$

d. x^9

e. $\frac{1}{32^{\frac{1}{5}}}$

f. $x^{\frac{3}{5}}$

2.3 Simplify each of the following expressions:

a. $(x^5)^2$

b. $(x^4)^{-6}$

c. $(x^9)^{\frac{1}{3}}$

a. x^{10}

b. x^{-24} or even better $\frac{1}{x^{24}}$

c. x^3

2.4 a. Rewrite $(1/5)^4$ using an integer as the base.
b. Rewrite $(1/x)^y$ using x as the base.
c. Rewrite $(2/7)^5$ without using parentheses.
d. Rewrite $(2/7)^5$ using a negative exponent.

$$a. \quad 5^{-4}$$

$$\text{b. } x^{-y}$$

c. $\frac{2^5}{7^5}$ or $\frac{32}{16807}$

d. $\left(\frac{7}{2}\right)^{-5}$

2.5 Solve each of the following equations for x .

a. $x^8 = 390625$

b. $x = 7$

c. $x^{\frac{3}{5}} = 2.93$

$$\mathbf{d.} \quad 10x^4 = 12960$$

$$x^8 = 390625$$

$$a. \quad (x^8)^{\frac{1}{8}} = (390625)^{\frac{1}{8}}$$

$$x = \sqrt[8]{390625} = 5$$

$$x^{\frac{1}{3}} = 7$$

$$\text{b. } \left(x^{\frac{1}{3}} \right)^3 = 7^3$$

$$x = 343$$

$$x^{\frac{3}{5}} = 2.93$$

$$c \quad x = \sqrt[3]{293}^5$$

$$x \equiv 1.4309^5$$

$$x \approx 6$$

$$10x^4 = 12960$$

$$\frac{10x^4}{10} = \frac{12960}{10}$$

d. $x^4 = 1296$

$$(x^4)^{\frac{1}{4}} = 1296^{\frac{1}{4}}$$

$$x = \sqrt[4]{1296}$$

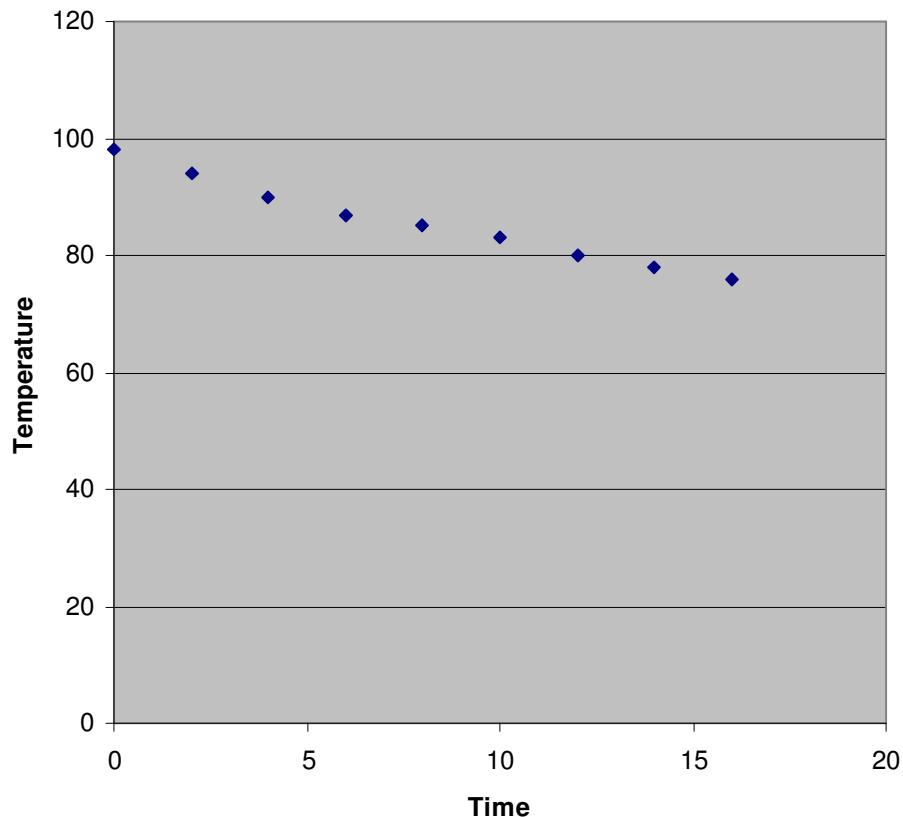
$$x = 6$$

2.6 This table shows the change in the temperature of a cup of coffee over time.

Time (min)	Temperature (°C)
0	98
2	94
4	90
6	87
8	85
10	83
12	80
14	78
16	76

- Create a scatterplot of the data.
- Find the mean percent decrease in temperature over a 2-min interval, then write an equation of the form $y = a \cdot b^x$ that models the data.

2.6



a

b. The mean rate of decrease is -3% so the equation for the model would be: $y = 98 \bullet 0.97^x$