Chiber of Levery

This is NOT intended to be comprehensive!

- 1) State the domain of each of the following functions.
 - a) $y = e^x$
 - b) $y = \log x$
- 2) Fill in the following table:

Function	Base, b	y-intercept	Growth or decay?	Growth or decay rate
$y = 2(1.08)^x$	1.08	(0,2)	Growil	86
$y = 6(0.87)^x$	0.87	(0,6)	decan	-13%
$y = 3e^{-0.07x}$	e	(0,31	deay	76
23/112/4	1,12	(0, 23)	Growth	12%

- 3) Find an equation for an exponential passing through the points (-2, 5) and (3, 160)
- 4) According to one source, in 1984 there were approximately 1500 AIDS cases in California. By 1986 there were 4000 cases. Uncontrolled, a virus tends to spread exponentially. Assuming the virus were to spread uncontrolled,
 - a) Write an equation for the number of AIDS cases t years after 1984.
 - b) Describe your equation in words
 - c) According to your model, how many people would have been infected in California in 2001?
- 5) A population can be described by $P(t) = 200(1.05)^t$. What is the doubling time for this population?
- 6) Solve each of the equations below for x using algebra and properties of logarithms and exponents. Show all steps!
 - a) $4(1.7)^x = 7(1.08)^x$
 - b) $3e^{x+5} = 7$
 - c) $\log(x+3) = 3$
 - d) $\log (x 1) + \log(x + 1) = 2$
- 7) A population doubles every 8 years. Assuming exponential growth, find the
 - a) Continuous growth rate
 - b) Annual growth rate

(a) all reals
(b)
$$(0, \infty)$$

(b) $(0, \infty)$

(c) $(0, \infty)$

(d) $(0, \infty)$

(e) $(0, 0)$

(f) $(0, 0)$

(g) $(0, 1500)$

(g) $(0,$

(5)
$$P(r) = 300 (1.01)^{T}$$

$$2 = 1.05^{T} | 100 | (1.01)^{T}$$

$$4 = 1.05^{T} | 100 | (1.01)^{T}$$

$$14.007 | 4005$$

$$14.007 | 4005$$

$$14.007 | 4005$$

$$14.007 | 4005$$

$$14.007 | 4005$$

$$14.007 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4005$$

$$15.574 | 4007 | 4007 | 4005$$

$$15.574 | 4007 | 4007 | 4005$$

$$15.574 | 4007$$

$$| \log (x-1) + \log (x+1) = 2$$

$$| \log (x-1)(x+1) = 2 \rightarrow 10^{2} = (x-1)(x+1)$$

$$| \chi^{2} - 1 = 100 \quad | X = 9.95 |$$

$$| \chi^{2} = 99 \quad | X = 9.95 |$$

$$| \chi^{2} = 99 \quad | X = 9.95 |$$

$$| \chi^{2} = 99 \quad | X = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99 \quad | \chi^{2} = 9.95 |$$

$$| \chi^{2} = 99$$