4.2 Solutions to Exercises

1. b 3. a 5. e

7. The value of b affects the steepness of the slope, and graph D has the highest positive slope it has the largest value for b.

9. The value of a is your initial value, when your x = 0. Graph C has the largest value for a.

- 11. The function changes x to -x, which will reflect the graph across the y-axis.
- The function will shift the function three units up.

15. The function will shift the function two units to the right.

- 17. $f(x) = 4^x + 4$ 19. $f(x) = 4^{(x+2)}$ 21. $f(x) = -4^x$
- as x→∞, f(x) → -∞. When x is approaching +∞, f(x) becomes negative because 4^x is multiplied by a negative number.
 as x → -∞, f(x) = -1. As x approaches -∞, f(x) approaches 1, because -5(4^{-x}) will approach 0, which means f(x) approaches -1 as it's shifted down one.
- 25. as $x \to \infty$, $f(x) \to -2$ As x approaches $+\infty$, f(x) approaches -2, because $3\left(\frac{1}{2}\right)^x$ will approach 0, which means f(x) approaches -2 as it's shifted down 2. as $x \to -\infty$, $f(x) \to +\infty$ because $\left(\frac{1}{2}\right)^{-x} = (2)^x$ so $f(x) \to \infty$.
- 27. as $x \to \infty$, $f(x) \to 2$ As x approaches $+\infty$, f(x) approaches 2, because $3(4)^{-x}$ will approach 0, which means f(x) approaches 2 as it's shifted up 2.

as $x \to -\infty$, $f(x) \to \infty$ because $(4)^{-x} = \left(\frac{1}{4}\right)^x$ so $f(x) \to \infty$.

- 29. $f(x) = -2^{x+2} + 1$ flipped about the x-axis, horizontal shift 2 units to the left, vertical shift 1 unit up
- 31. $f(x) = -2^{-x} + 2$ flipped about the x-axis, flipped about the y-axis, vertical shift 2 units up
- 33. $f(x) = -2(3)^x + 7$ The form of an exponential function is $y = ab^x + c$. This equation has a horizontal asymptote at x = 7 so we know c = 7, you can also now solve for a and bby choosing two other points on the graph, in this case (0,5) an (1,1), you can then plug (0,5) into your general equation and solve for a algebraically, and then use your second point to solve for b.
- 35. $f(x) = 2\left(\frac{1}{2}\right)^x 4$ The form of an exponential function is $y = ab^x + c$. This equation has a horizontal asymptote at x = -4 so we know c = -4, you can also now solve for *a* and *b* by choosing two other points on the graph, in this case (0,-2) an (-1,0), you can then plug (0,-2) into your general equation and solve for *a* algebraically, and then use your second point to solve for *b*.